ARM Cortex-A77

Last updated
ARM Cortex-A77
General information
Launched2019
Designed by ARM Holdings
Max. CPU clock rate to 3.35 GHz in phones and 3.3 GHz in tablets/laptops 
Cache
L1 cache 128  KiB (64 KiB I-cache with parity, 64 KiB D-cache) per core
L2 cache256–512 KiB
L3 cache1–4 MiB
Architecture and classification
Microarchitecture ARM Cortex-A77
Instruction set ARMv8-A
Extensions
Physical specifications
Cores
  • 1–4 per cluster
Products, models, variants
Product code name(s)
  • Deimos
History
Predecessor(s) ARM Cortex-A76
Successor(s) ARM Cortex-A78, ARM Cortex-X1

The ARM Cortex-A77 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre. [1] ARM announced an increase of 23% and 35% in integer and floating point performance, respectively. Memory bandwidth increased 15% relative to the A76. [1]

Contents

Design

The Cortex-A77 serves as the successor of the Cortex-A76. The Cortex-A77 is a 4-wide decode out-of-order superscalar design with a new 1.5K macro-OP (MOPs) cache. It can fetch 4 instructions and 6 Mops per cycle. And rename and dispatch 6 Mops, and 13 µops per cycle. The out-of-order window size has been increased to 160 entries. The backend is 12 execution ports with a 50% increase over Cortex-A76. It has a pipeline depth of 13 stages and the execution latencies of 10 stages. [1] [2]

There are six pipelines in the integer cluster – an increase of two additional integer pipelines from Cortex-A76. One of the changes from Cortex-A76 is the unification of the issue queues. Previously each pipeline had its own issue queue. On Cortex-A77, there is now a single unified issue queue which improves efficiency. Cortex-A77 added a new fourth general math ALU with a typical 1-cycle simple math operations and some 2-cycle more complex operations. In total, there are three simple ALUs that perform arithmetic and logical data processing operations and a fourth port which has support for complex arithmetic (e.g. MAC, DIV). Cortex-A77 also added a second branch ALU, doubling the throughput for branches.

There are two ASIMD/FP execution pipelines. This is unchanged from Cortex-A76. What did change is the issue queues. As with the integer cluster, the ASIMD cluster now features a unified issue queue for both pipelines, improving efficiency. As with Cortex-A76, the ASIMD on Cortex-A77 are both 128-bit wide capable of 2 double-precision operations, 4 single-precision, 8 half-precision, or 16 8-bit integer operations. Those pipelines can also execute the cryptographic instructions if the extension is supported (not offered by default and requires an additional license from Arm). Cortex-A77 added a second AES unit in order to improve the throughput of cryptography operations. [3]

Larger ROB, Up to 160-entry, up from 128, Add New L0 MOP cache , can up to 1536-entry. [4]

The core supports unprivileged 32-bit applications, but privileged applications must utilize the 64-bit ARMv8-A ISA. It also supports Load acquire (LDAPR) instructions (ARMv8.3-A), Dot Product instructions (ARMv8.4-A), and PSTATE Speculative Store Bypass Safe (SSBS) bit instructions (ARMv8.5-A).

The Cortex-A77 supports ARM's DynamIQ technology, and is expected to be used as high-performance cores in combination with Cortex-A55 power-efficient cores. [1]

Architecture changes in comparison with ARM Cortex-A76

Licensing

The Cortex-A77 is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores (e.g. GPU, display controller, DSP, image processor, etc.) into one die constituting a system on a chip (SoC).

Usage

The Samsung Exynos 980 was introduced in September 2019 [7] [8] as the first SoC to use the Cortex-A77 microarchitecture. [9] This was later followed by a lower-end variant Exynos 880 in May 2020. [10] The MediaTek Dimensity 1000, 1000L and 1000+ SoCs also utilizes the Cortex-A77 microarchitecture. [11] Derivatives by the names of Kryo 585, Kryo 570 and Kryo 560, are used in the Snapdragon 865, 750G, and 690 respectively. [12] [13] [14] HiSilicon uses the Cortex-A77 at two different frequencies in their Kirin 9000 series. [15] [16]

Notable is that both its predecessor (Cortex-A76) and its successor (Cortex-A78) had automotive variants with Split-Lock capability, the Cortex-A76AE and Cortex-A78AE, but the Cortex-A77 did not, thus not finding its way into security critical applications.

See also

Related Research Articles

The ARM Cortex-A5 is a 32-bit processor core licensed by ARM Holdings implementing the ARMv7-A architecture announced in 2009.

Qualcomm Krait is an ARM-based central processing unit included in the Snapdragon S4 and earlier models of Snapdragon 400/600/800 series SoCs. It was introduced in 2012 as a successor to the Scorpion CPU and although it has architectural similarities, Krait is not a Cortex-A15 core, but it was designed in-house. In 2015, Krait was superseded by the 64-bit Kryo architecture, first introduced in Snapdragon 820 SoC.

The ARM Cortex-A57 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings. The Cortex-A57 is an out-of-order superscalar pipeline. It is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores into one die constituting a system on a chip (SoC).

<span class="mw-page-title-main">ARM Cortex-A53</span> Microarchitecture implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings

The ARM Cortex-A53 is one of the first two central processing units implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Cambridge design centre, along with the Cortex-A57. The Cortex-A53 is a 2-wide decode superscalar processor, capable of dual-issuing some instructions. It was announced October 30, 2012 and is marketed by ARM as either a stand-alone, more energy-efficient alternative to the more powerful Cortex-A57 microarchitecture, or to be used alongside a more powerful microarchitecture in a big.LITTLE configuration. It is available as an IP core to licensees, like other ARM intellectual property and processor designs.

This is a comparison of ARM instruction set architecture application processor cores designed by ARM Holdings and 3rd parties. It does not include ARM Cortex-R, ARM Cortex-M, or legacy ARM cores.

Qualcomm Kryo is a series of custom or semi-custom ARM-based CPUs included in the Snapdragon line of SoCs.

The ARM Cortex-A73 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Sophia design centre. The Cortex-A73 is a 2-wide decode out-of-order superscalar pipeline. The Cortex-A73 serves as the successor of the Cortex-A72, designed to offer 30% greater performance or 30% increased power efficiency.

The ARM Cortex-A55 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Cambridge design centre. The Cortex-A55 is a 2-wide decode in-order superscalar pipeline.

The ARM Cortex-A75 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings's Sophia design centre. The Cortex-A75 is a 3-wide decode out-of-order superscalar pipeline. The Cortex-A75 serves as the successor of the Cortex-A73, designed to improve performance by 20% over the A73 in mobile applications while maintaining the same efficiency.

The ARM Cortex-A76 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre. ARM states a 25% and 35% increase in integer and floating point performance, respectively, over a Cortex-A75 of the previous generation.

<span class="mw-page-title-main">Samsung Galaxy A71</span> Android phone from Samsung

Samsung Galaxy A71 is an Android smartphone designed, developed, marketed, and manufactured by Samsung Electronics as part of its sixth-generation Galaxy A series.

The ARM Cortex-A78 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Ltd.'s Austin centre.

The ARM Cortex-X1 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre as part of ARM's Cortex-X Custom (CXC) program.

The ARM Cortex-A710 is the successor to the ARM Cortex-A78, being the First-Generation Armv9 “big” Cortex CPU. It is the companion to the ARM Cortex-A510 "LITTLE" efficiency core. It was designed by ARM Ltd.'s Austin centre. It is the fourth and last iteration of Arm’s Austin core family. It forms part of Arm's Total Compute Solutions 2021 (TCS21) along with Arm's Cortex-X2, Cortex-A510, Mali-G710 and CoreLink CI-700/NI-700.

The ARM Cortex-A510 is the successor to the ARM Cortex-A55 and the first ARMv9 high efficiency "LITTLE" CPU. It is the companion to the ARM Cortex-A710 "big" core. It is a clean-sheet 64-bit CPU designed by ARM Holdings' Cambridge design team.

The ARM Cortex-X2 is a central processing unit implementing the ARMv9-A 64-bit instruction set designed by ARM Holdings' Austin design centre as part of ARM's Cortex-X Custom (CXC) program.It forms part of Arm's Total Compute Solutions 2021 (TCS21) along with Arm's Cortex-A710, Cortex-A510, Mali-G710 and CoreLink CI-700/NI-700.

The ARM Cortex-A715 is the second generation ARMv9 "big" Cortex CPU. Compared to its predecessor the Cortex-A710 the Cortex-A715 CPU is noted for having a 20% increase in power efficiency, and 5% improvement in performance. The Cortex-A715 shows comparable performance to the previous generation Cortex-X1 CPU. This generation of chips starting with the A715 drops native 32-bit support which is noted as a possible problem in 32-bit workloads. It forms part of Arm's Total Compute Solutions 2022 (TCS22) along with Arm's Cortex-X3, Cortex-A510, Arm Immortalis-G715 and CoreLink CI-700/NI-700.

The ARM Cortex-X3 is the third generation X-series high-performance CPU core from Arm. It forms part of Arm's Total Compute Solutions 2022 (TCS22) along with Arm's Cortex-A715, Cortex-A510, Immortalis-G715 and CoreLink CI-700/NI-700.

The ARM Cortex-X4 is a CPU core model from Arm. unveiled in TCS23, it serves as the successor of The ARM Cortex-X3, X-series CPU cores generally focus on high performance, and can be paired with other cores in its family like ARM Cortex-A720 or/and ARM Cortex-A520 in a CPU cluster.

References

  1. 1 2 3 4 Frumusanu, Andrei. "Arm's New Cortex-A77 CPU Micro-architecture: Evolving Performance". www.anandtech.com. Retrieved 2019-06-16.
  2. Schor, David (2019-05-26). "Arm Unveils Cortex-A77, Emphasizes Single-Thread Performance". WikiChip Fuse. Retrieved 2019-06-16.
  3. "Arm Cortex-A77".
  4. "Cortex-A77 - Microarchitectures - ARM - WikiChip". en.wikichip.org. Retrieved 2021-02-06.
  5. "Arm Cortex-A77 - everything you need to know". Android Authority. 2019-05-27. Retrieved 2021-02-08.
  6. "Cortex-A77 - Microarchitectures - ARM - WikiChip". en.wikichip.org. Retrieved 2021-02-08.
  7. "Samsung Introduces its First 5G-Integrated Mobile Processor, the Exynos 980". Samsung Semiconductor. Retrieved 2021-01-11.
  8. "Exynos 980 5G Mobile Processor: Specs, Features | Samsung Exynos". Samsung Semiconductor. Retrieved 2020-06-18.
  9. Frumusanu, Andrei. "Samsung Announces Exynos 980 - Mid-Range With Integrated 5G Modem". www.anandtech.com. Retrieved 2021-01-11.
  10. "Exynos 880 5G Mobile Processor: Specs, Features | Samsung Exynos". Samsung Semiconductor. Retrieved 2021-01-11.
  11. MediaTek (2020-06-18). "MediaTek Dimensity 1000 Series". MediaTek. Retrieved 2020-06-18.
  12. "Qualcomm Snapdragon 865 5G Mobile Platform | Latest Snapdragon Processor". Qualcomm. 2019-11-19. Retrieved 2020-06-18.
  13. "Qualcomm Snapdragon 750G Mobile Platform | Qualcomm". www.qualcomm.com. Retrieved 2021-01-11.
  14. "Snapdragon 690 Mobile Platform". Qualcomm.
  15. "Kirin 9000 Chipset | HiSilicon Official Site". www.hisilicon.com. Retrieved 2023-10-04.
  16. Hinum, Klaus. "HiSilicon Kirin 9000 Processor - Benchmarks and Specs". Notebookcheck. Retrieved 2023-10-04.