ARM Cortex-A

Last updated
ARM Cortex-A
General information
Designed by ARM Holdings
Architecture and classification
Instruction set ARM, Thumb-2 (32-bit cores); ARMv7-A and ARMv8-A
A64, A32, T32 (64-bit cores); ARMv8-A, ARMv8.1-A, ARMv8.2-A, ARMv9-A, ARMv9.2-A

The ARM Cortex-A is a group of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Holdings. The cores are intended for application use. The group consists of 32-bit only cores: ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-A15, ARM Cortex-A17 MPCore, and ARM Cortex-A32, 32/64-bit mixed operation cores: ARM Cortex-A35, ARM Cortex-A53, ARM Cortex-A55, ARM Cortex-A57, ARM Cortex-A72, ARM Cortex-A73, ARM Cortex-A75, ARM Cortex-A76, ARM Cortex-A77, ARM Cortex-A78, ARM Cortex-A710, and ARM Cortex-A510 Refresh, and 64-bit only cores: ARM Cortex-A34, ARM Cortex-A65, ARM Cortex-A510 (2021), ARM Cortex-A715, ARM Cortex-A520, and ARM Cortex-A720.

Contents

The 32-bit ARM Cortex-A cores, except for the Cortex-A32, implement the ARMv7-A profile of the ARMv7 architecture. The main distinguishing feature of the ARMv7-A profile, compared to the other two profiles, the ARMv7-R profile implemented by the ARM Cortex-R cores and the ARMv7-M profile implemented by most of the ARM Cortex-M cores, is that only the ARMv7-A profile includes a memory management unit (MMU). [1] Many modern operating systems require a MMU to run.

The 64-bit ARM Cortex-A cores as well as the 32-bit ARM Cortex-A32 implement the ARMv8-A profile of the ARMv8 architecture.

Overview

32-bit
YearCore
2005 Cortex-A8
2007 Cortex-A9
2009 Cortex-A5
2010 Cortex-A15
2011 Cortex-A7
2013 Cortex-A12
2014 Cortex-A17
2016 Cortex-A32
32/64-bit
YearCore
2012 Cortex-A53
Cortex-A57
2015 Cortex-A35
Cortex-A72
2016 Cortex-A73
2017 Cortex-A55
Cortex-A75
2018 Cortex-A76
2019 Cortex-A77
2020 Cortex-A78
2021 Cortex-A710
2022 Cortex-A510 Refresh
64-bit
YearCore
2016 Cortex-A34
2018 Cortex-A65
2021 Cortex-A510
2022 Cortex-A715
2023 Cortex-A520
Cortex-A720

ARM license

Arm Holdings neither manufactures nor sells CPU devices based on its own designs, but rather licenses the processor architecture to interested parties. ARM offers a variety of licensing terms, varying in cost and deliverables. To all licensees, ARM provides an integratable hardware description of the ARM core, as well as complete software development toolset, and the right to sell manufactured silicon containing the ARM CPU.

Silicon customization

Integrated device manufacturers (IDM) receive the ARM Processor IP as synthesizable RTL (written in Verilog). In this form, they have the ability to perform architectural level optimizations and extensions. This allows the manufacturer to achieve custom design goals, such as higher clock speed, very low power consumption, instruction set extensions, optimizations for size, debug support, etc. To determine which components have been included in an ARM IC chip, consult the manufacturer datasheet and related documentation.

Instruction sets

The Cortex-A5 / A7 / A8 / A9 / A12 / A15 / A17 cores implement the ARMv7-A architecture. [2] The Cortex-A32 / A34 / A35 / A53 / A57 / A72 / A73 cores implement the ARMv8-A architecture. ARMv8-A architecture provides exclusive loads and stores instructions as synchronization primitives. [3] The Cortex-A55 / A65 / A75 / A76 / A77 / A78 cores implement the ARMv8.2-A architecture. The Cortex-A510, A710 and A715 cores implement the ARMv9-A architecture. The Cortex-A520 and A720 cores implement the ARMv9.2-A architecture

Documentation

A typical top-down documentation tree is:

  1. IC Manufacturer's high-level marketing slides
  2. IC Manufacturer datasheet for the exact physical chip
  3. IC Manufacturer Reference Manuals — describes common peripherals and other aspects of physical chips within the same series
  4. ARM Core Reference Manuals — for the exact ARM core processor within the chip
  5. ARM Architecture Reference Manuals — includes detailed description of all instruction sets of the core [2]

IC Manufacturers usually have additional documents, including: evaluation board user manuals, application notes, getting started with development software, software library documents, errata, and more.

See also

Related Research Articles

ARM is a family of RISC instruction set architectures (ISAs) for computer processors. Arm Ltd. develops the ISAs and licenses them to other companies, who build the physical devices that use the instruction set. It also designs and licenses cores that implement these ISAs.

<span class="mw-page-title-main">ARM Cortex-M</span> Group of 32-bit RISC processor cores

The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM Limited. These cores are optimized for low-cost and energy-efficient integrated circuits, which have been embedded in tens of billions of consumer devices. Though they are most often the main component of microcontroller chips, sometimes they are embedded inside other types of chips too. The Cortex-M family consists of Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33, Cortex-M35P, Cortex-M52, Cortex-M55, Cortex-M85. A floating-point unit (FPU) option is available for Cortex-M4 / M7 / M33 / M35P / M52 / M55 / M85 cores, and when included in the silicon these cores are sometimes known as "Cortex-MxF", where 'x' is the core variant.

<span class="mw-page-title-main">ARM Cortex-R</span> Family of microprocessor cores with ARM microarchitecture

The ARM Cortex-R is a family of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Ltd. The cores are optimized for hard real-time and safety-critical applications. Cores in this family implement the ARM Real-time (R) profile, which is one of three architecture profiles, the other two being the Application (A) profile implemented by the Cortex-A family and the Microcontroller (M) profile implemented by the Cortex-M family. The ARM Cortex-R family of microprocessors currently consists of ARM Cortex-R4(F), ARM Cortex-R5(F), ARM Cortex-R7(F), ARM Cortex-R8(F), ARM Cortex-R52(F), ARM Cortex-R52+(F), and ARM Cortex-R82(F).

<span class="mw-page-title-main">AArch64</span> 64-bit extension of the ARM architecture

AArch64 or ARM64 is the 64-bit Execution state of the ARM architecture family. It was first introduced with the Armv8-A architecture, and had many extension updates.

The ARM Cortex-A57 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings. The Cortex-A57 is an out-of-order superscalar pipeline. It is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores into one die constituting a system on a chip (SoC).

This is a comparison of ARM instruction set architecture application processor cores designed by ARM Holdings and 3rd parties. It does not include ARM Cortex-R, ARM Cortex-M, or legacy ARM cores.

The ARM Cortex-A72 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Austin design centre. The Cortex-A72 is a 3-way decode out-of-order superscalar pipeline. It is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores into one die constituting a system on a chip (SoC). The Cortex-A72 was announced in 2015 to serve as the successor of the Cortex-A57, and was designed to use 20% less power or offer 90% greater performance.

Qualcomm Kryo is a series of custom or semi-custom ARM-based CPUs included in the Snapdragon line of SoCs.

The ARM Cortex-A73 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Sophia design centre. The Cortex-A73 is a 2-wide decode out-of-order superscalar pipeline. The Cortex-A73 serves as the successor of the Cortex-A72, designed to offer 30% greater performance or 30% increased power efficiency.

The ARM Cortex-A75 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings's Sophia design centre. The Cortex-A75 is a 3-wide decode out-of-order superscalar pipeline. The Cortex-A75 serves as the successor of the Cortex-A73, designed to improve performance by 20% over the A73 in mobile applications while maintaining the same efficiency.

The ARM Cortex-A76 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre. ARM states a 25% and 35% increase in integer and floating point performance, respectively, over a Cortex-A75 of the previous generation.

The ARM Cortex-X1 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre as part of ARM's Cortex-X Custom (CXC) program.

The ARM Cortex-A510 is the successor to the ARM Cortex-A55 and the first ARMv9 high efficiency "LITTLE" CPU. It is the companion to the ARM Cortex-A710 "big" core. It is a clean-sheet 64-bit CPU designed by ARM Holdings' Cambridge design team.

The ARM Cortex-X2 is a central processing unit implementing the ARMv9-A 64-bit instruction set designed by ARM Holdings' Austin design centre as part of ARM's Cortex-X Custom (CXC) program. It forms part of Arm's Total Compute Solutions 2021 (TCS21) along with Arm's Cortex-A710, Cortex-A510, Mali-G710 and CoreLink CI-700/NI-700.

The ARM Neoverse is a group of 64-bit ARM processor cores licensed by Arm Holdings. The cores are intended for datacenter, edge computing, and high-performance computing use. The group consists of ARM Neoverse V-Series, ARM Neoverse N-Series, and ARM Neoverse E-Series.

The ARM Cortex-A715 is the second generation ARMv9 "big" Cortex CPU. Compared to its predecessor the Cortex-A710 the Cortex-A715 CPU is noted for having a 20% increase in power efficiency, and 5% improvement in performance. The Cortex-A715 shows comparable performance to the previous generation Cortex-X1 CPU. This generation of chips starting with the A715 drops native 32-bit support which is noted as a possible problem in 32-bit workloads. It forms part of Arm's Total Compute Solutions 2022 (TCS22) along with Arm's Cortex-X3, Cortex-A510, Arm Immortalis-G715 and CoreLink CI-700/NI-700.

The ARM Cortex-X4 is a high-performance CPU core from Arm, released in 2023 as part of Arm's "total compute solution." It serves as the successor of ARM Cortex-X3. X-series CPU cores generally focus on high performance, and can be grouped with other ARM cores, such as ARM Cortex-A720 or/and ARM Cortex-A520 in a System-on-Chip (SoC).

The ARM Cortex-A520 is a "little" CPU core model from Arm unveiled in TCS23 it serves as a successor to the CPU core ARM Cortex-A510. The Cortex-A500 CPU cores series generally focus on high efficiency, the CPU core can be paired with the other CPU cores in its family like ARM Cortex-A720 or/and Cortex-X4 in a CPU cluster.

The ARM Cortex-A720 is a CPU core model from Arm unveiled in TCS23, it serves as a successor of the CPU core ARM Cortex-A715, Cortex-A700 CPU cores series generally focus on high performance and efficiency, the CPU core can be paired with other cores in its family like ARM Cortex-X4 or/and ARM Cortex-A520 in a CPU cluster. It can be used as either "big" or "LITTLE".

References

  1. "Cortex-A Series".
  2. 1 2 ARMv7-A Architecture Reference Manual; ARM Holdings.
  3. "ARMv8-A Synchronization primitives". p. 6. Retrieved 2023-12-14.
ARM Cortex-A official documents
ARM
Core
Bit
Width
ARM
Website
ARM Technical
Reference Manual
ARM Architecture
Reference Manual
Cortex-A5 32 Link Link ARMv7-A
Cortex-A7 32 Link Link
Cortex-A8 32 Link Link
Cortex-A9 32 Link Link
Cortex-A12 32merged into A17
Cortex-A15 32 Link Link
Cortex-A17 32 Link Link
Cortex-A32 32 Link Link ARMv8-A
Cortex-A34 64 Link Link
Cortex-A35 32/64 Link Link
Cortex-A53 32/64 Link Link
Cortex-A55 32/64 Link Link ARMv8.2-A
Cortex-A57 32/64 Link Link ARMv8-A
Cortex-A510 64 (2021)
32/64 (2022)
Link Link ARMv9-A
Cortex-A520 64 Link Link ARMv9.2-A
Cortex-A65 64 Link Link ARMv8.2-A
Cortex-A72 32/64 Link Link ARMv8-A
Cortex-A73 32/64 Link Link
Cortex-A75 32/64 Link Link ARMv8.2-A
Cortex-A76 32/64 Link Link
Cortex-A77 32/64 Link Link
Cortex-A78 32/64 Link Link
Cortex-A710 32/64 Link Link ARMv9-A
Cortex-A715 64 Link Link
Cortex-A720 64 Link Link ARMv9.2-A
Quick Reference Cards
Migrating