Release date | November 27, 2009 |
---|---|
Codename | GT21x |
Architecture | Tesla |
Models | GeForce series
|
Transistors | 260M 40 nm (GT218)
|
Cards | |
Entry-level | 310 315 GT 320 GT 330 |
Mid-range | GT 340 |
API support | |
Direct3D | Direct3D 10.1 Shader Model 4.1 |
OpenCL | OpenCL 1.1 |
OpenGL | OpenGL 3.3 |
History | |
Predecessor | GeForce 9 series |
Variant | GeForce 200 series |
Successor | GeForce 400 series |
Support status | |
Unsupported |
The GeForce 300 series is a series of Tesla-based graphics processing units developed by Nvidia, first released in November 2009. Its cards are rebrands of the GeForce 200 series cards, available only for OEMs. All GPUs of the series support Direct3D 10.1, except the GT 330 (Direct3D 10.0).
On November 27, 2009, Nvidia released its first GeForce 300 series video card, the GeForce 310. However, this card is a re-brand of one of Nvidia's older models (the GeForce 210) and not based on the newer Fermi architecture. [1]
On February 2, 2010, Nvidia announced the release of the GeForce GT 320, GT 330 and GT 340, available to OEMs only. [2] The Geforce GT 340 is simply a rebadged GT 240, sharing exactly the same specifications, while the GT 320 and 330 were newer cards (albeit still based on the previous generation GT200b and G92b architecture). [2]
Model | Launch | Code name | Fab (nm) | Transistors (million) | Die size (mm2) | Bus interface | Core config [lower-alpha 1] | Clock rate | Fillrate | Memory configuration | Processing power (GFLOPS) [lower-alpha 2] | TDP (Watts) | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Core (MHz) | Shader (MHz) | Memory (MHz) | Pixel (GP/s) | Texture (GT/s) | Size (MB) | Bandwidth (GB/s) | DRAM type | Bus width (bit) | Single precision | ||||||||||
GeForce 310 | November 27, 2009 | GT218 | TSMC 40 nm | 260 | 57 | PCIe 2.0 x16 | 16:8:4 | 589 | 1402 | 1000 | 2.356 | 4.712 | 512 | 8 | DDR2 | 64 | 44.8 | 30.5 | OEM Card, similar to Geforce 210 |
GeForce 315 | February 2010 | GT216 | 486 | 100 | 48:16:4 | 475 | 1100 | 1580 | 3.8 | 7.6 | 512 | 12.6 | DDR3 | 105.6 | 33 | OEM Card, similar to Geforce GT220 | |||
GeForce GT 320 | GT215 | 727 | 144 | 72:24:8 | 540 | 1302 | 4.32 | 12.96 | 1024 | 25.3 | GDDR3 | 128 | 187.5 | 43 | OEM Card | ||||
GeForce GT 330 [3] | GT215-301-A3 [4] | 96:32:8 | 550 | 1350 | 4.40 | 17.60 | 512 | 32.00 | 128 | 257.3 | 75 | Specifications vary depending on OEM, similar to GT230 v2. | |||||||
G92 [5] | 500 | 1250 | 4.000 | 24.00 | 256 | 51.20 | 256 | 240.0 | |||||||||||
G92B [6] | 96:32:16 | 8.000 | 1024 | 16.32 | DDR2 | 128 | |||||||||||||
GeForce GT 340 | GT215 | 96:32:8 | 550 | 1340 | 3400 | 512 1024 | 54.4 | GDDR5 [7] | 128 | 257.3 | 69 | OEM Card, similar to GT240 |
NVIDIA ceased driver support for the GeForce 300 series on April 1, 2016. [8]
GeForce is a brand of graphics processing units (GPUs) designed by Nvidia. As of the GeForce 40 series, there have been eighteen iterations of the design. The first GeForce products were discrete GPUs designed for add-on graphics boards, intended for the high-margin PC gaming market, and later diversification of the product line covered all tiers of the PC graphics market, ranging from cost-sensitive GPUs integrated on motherboards, to mainstream add-in retail boards. Most recently, GeForce technology has been introduced into Nvidia's line of embedded application processors, designed for electronic handhelds and mobile handsets.
The GeForce 256 is the original release in Nvidia's "GeForce" product-line. Announced on August 31, 1999 and released on October 11, 1999, the GeForce 256 improves on its predecessor by increasing the number of fixed pixel pipelines, offloading host geometry calculations to a hardware transform and lighting (T&L) engine, and adding hardware motion compensation for MPEG-2 video. It offered a notably large leap in 3D PC gaming performance and was the first fully Direct3D 7-compliant 3D accelerator.
The GeForce FX or "GeForce 5" series is a line of graphics processing units from the manufacturer Nvidia.
The GeForce 7 series is the seventh generation of Nvidia's GeForce graphics processing units. This was the last series available on AGP cards.
Quadro was Nvidia's brand for graphics cards intended for use in workstations running professional computer-aided design (CAD), computer-generated imagery (CGI), digital content creation (DCC) applications, scientific calculations and machine learning.
The GeForce 8 series is the eighth generation of Nvidia's GeForce line of graphics processing units. The third major GPU architecture developed by Nvidia, Tesla represents the company's first unified shader architecture.
The GeForce 9 series is the ninth generation of Nvidia's GeForce series of graphics processing units, the first of which was released on February 21, 2008. Products are based on a slightly repolished Tesla microarchitecture, adding PCIe 2.0 support, improved color and z-compression, and built on a 65 nm process, later using 55 nm process to reduce power consumption and die size.
The GeForce 200 series is a series of Tesla-based GeForce graphics processing units developed by Nvidia.
Nvidia Ion was a product line of Nvidia Corporation intended for motherboards of low-cost portable computers. It used graphics processing units and chipsets intended for small products.
The GeForce 100 series is a series of Tesla-based graphics processing units developed by Nvidia, first released in March 2009. Its cards are rebrands of GeForce 9 series cards, available only for OEMs. However, the GTS 150 was briefly available to consumers.
Serving as the introduction of Fermi, the GeForce 400 series is a series of graphics processing units developed by Nvidia. Its release was originally slated in November 2009; however, after delays, it was released on March 26, 2010 with availability following in April 2010.
A refresh of the Fermi based GeForce 400 series, the GeForce 500 series is a series of graphics processing units developed by Nvidia, first released on November 9, 2010 with the GeForce GTX 580.
The GeForce 600 series is a series of graphics processing units developed by Nvidia, first released in 2012. They served as the introduction of the Kepler architecture.
The GeForce 700 series is a series of graphics processing units developed by Nvidia. While mainly a refresh of the Kepler microarchitecture, some cards use Fermi (GF) and later cards use Maxwell (GM). GeForce 700 series cards were first released in 2013, starting with the release of the GeForce GTX Titan on February 19, 2013, followed by the GeForce GTX 780 on May 23, 2013. The first mobile GeForce 700 series chips were released in April 2013.
The GeForce 800M series is a family of graphics processing units by Nvidia for laptop PCs. It consists of rebrands of mobile versions of the GeForce 700 series and some newer chips that are lower end compared to the rebrands.
The GeForce 900 series is a family of graphics processing units developed by Nvidia, succeeding the GeForce 700 series and serving as the high-end introduction to the Maxwell microarchitecture, named after James Clerk Maxwell. They are produced with TSMC's 28 nm process.
The GeForce 10 series is a series of graphics processing units developed by Nvidia, initially based on the Pascal microarchitecture announced in March 2014. This design series succeeded the GeForce 900 series, and is succeeded by the GeForce 16 series and GeForce 20 series using the Turing microarchitecture.
Pascal is the codename for a GPU microarchitecture developed by Nvidia, as the successor to the Maxwell architecture. The architecture was first introduced in April 2016 with the release of the Tesla P100 (GP100) on April 5, 2016, and is primarily used in the GeForce 10 series, starting with the GeForce GTX 1080 and GTX 1070, which were released on May 17, 2016 and June 10, 2016 respectively. Pascal was manufactured using TSMC's 16 nm FinFET process, and later Samsung's 14 nm FinFET process.
The GeForce 30 series is a suite of graphics processing units (GPUs) designed and marketed by Nvidia, succeeding the GeForce 20 series. The GeForce 30 series is based on the Ampere architecture, which feature Nvidia's second-generation ray tracing (RT) cores and third generation Tensor Cores. Through Nvidia RTX, hardware-enabled ray tracing is possible on GeForce 30 series cards.