G-Sync is a proprietary adaptive sync technology developed by Nvidia aimed primarily at eliminating screen tearing and the need for software alternatives such as Vsync. [1] G-Sync eliminates screen tearing by allowing a video display's refresh rate to adapt to the frame rate of the outputting device (graphics card/integrated graphics) rather than the outputting device adapting to the display, which could traditionally be refreshed halfway through the process of a frame being output by the device, resulting in screen tearing, or two or more frames being shown at once. [2] In order for a device to use G-Sync, it must contain a proprietary G-Sync module sold by Nvidia. AMD has released a similar technology for displays, called FreeSync, which has the same function as G-Sync yet is royalty-free.
Nvidia built a special collision avoidance feature to avoid the eventuality of a new frame being ready while a duplicate is being drawn on screen (something that could generate lag and/or stutter) in which case the module anticipates the refresh and waits for the next frame to be completed. [3] Overdriving pixels also becomes tricky in a non-fixed refresh scenario, and solutions predicting when the next refresh is going to happen and accordingly adjusting the overdrive value must be implemented and tuned for each panel in order to avoid ghosting. [4]
This section needs additional citations for verification .(December 2019) |
The module carries all the functional parts. It is based around an Altera Arria V GX family FPGA featuring 156K logic elements, 396 DSP blocks and 67 LVDS channels. It is produced on the TSMC 28LP process and paired with three DDR3L DRAM chips to attain a certain bandwidth, for an aggregate 768 MB capacity. The employed FPGA also features a LVDS interface to drive the monitor panel. It is meant to replace common scalers and be easily integrated by monitor manufacturers, who only have to take care of the power delivery circuit board and input connections. [5]
GPU:
Driver:
Operating system:
System requirement:
Monitor:
G-Sync faces some criticism[ from whom? ] due to its proprietary nature and the fact that it is still being promoted when free alternatives exist, such as the VESA standard Adaptive-Sync which is an optional feature of DisplayPort version 1.2a. [7] While AMD's FreeSync relies on the above-mentioned optional component of DisplayPort 1.2a, G-Sync requires an Nvidia-made module in place of the usual scaler in the display in order for it to function properly with select Nvidia GeForce graphics cards, such as the ones from the GeForce 10 series (Pascal). [6] However, there do exist G-Sync compatible monitors that can also utilize AMD's FreeSync. [8] The G-Sync module itself has also been criticized for drawing power when the monitor is switched off, while comparable technologies don't draw any power when the monitor is switched off. [9] A basic test by technology YouTuber JayzTwoCents showed that monitors with the G-Sync module draw approximately 14W continuously when the monitor is off, and that comparable monitors without the G-Sync module draw 0.0W when the monitor is off. [9]
Brand | Model number | Release year | Resolution | Size | Refresh rate at native resolution | Panel technology |
---|---|---|---|---|---|---|
Acer | X34 Predator | 2015 | 3440x1440 | 34 | 100 Hz | IPS |
Acer | XB270H | 2014 | 1920x1080 | 27" | 144 Hz | TN |
Acer | XB270HA | 2014 | 1920x1080 | 27" | 144 Hz | TN |
Acer | XB280HK | 2014 | 3840x2160 | 28" | 60 Hz | TN |
Acer | XB281HK | 2015 | 3840x2160 | 28" | 60 Hz | TN |
Acer | XB271HK | 2016 | 3840x2160 | 27" | 60 Hz | IPS |
Acer | XB321HK | 2016 | 3840x2160 | 32" | 60 Hz | IPS |
Acer | XB240HA | 2015 | 1920x1080 | 24" | 144 Hz | TN |
Acer | XB241H | 2016 | 1920x1080 | 24" | 144 Hz (180 Hz overclocked) | TN |
Acer | XB241YU | 2016 | 2560x1440 | 23.8" | 144 Hz (165 Hz overclocked) | TN |
Acer | XB252Q | 2017 | 1920x1080 | 24.5" | 240 Hz | TN |
Acer | XB270HU | 2015 | 2560x1440 | 27" | 144 Hz | IPS (AHVA) |
Acer | XB271HU | 2016 | 2560x1440 | 27" | 144 Hz (165 Hz overclocked) | IPS (AHVA) |
Acer | XB271HUA | 2016 | 2560x1440 | 27" | 144 Hz (165 Hz overclocked) | TN |
Acer | XB272 | 2017 | 1920x1080 | 27" | 240 Hz | TN |
Acer | X34 | 2015 | 3440x1440 | 34" | 60 Hz (100 Hz overclocked) | IPS |
Acer | Z271 | 2016 | 1920x1080 | 27" | 144 Hz | VA |
Acer | Z301C | 2016 | 2560x1080 | 29.5" | 144 Hz (200 Hz overclocked) | VA |
Acer | Z35 | 2016 | 2560x1080 | 35" | 144~200 Hz | VA |
AOC | G2460PG | 2014 | 1920x1080 | 24" | 144 Hz | TN |
AOC | AG271QG | 2016 | 2560x1440 | 27" | 165 Hz | IPS (AHVA) |
AOC | AG271UG | 2017 | 3840x2160 | 27" | 60 Hz | IPS |
AOC | AG352UCG | 2017 | 3440x1440 | 35" | 100 Hz | VA |
Asus | PG348Q | 2016 | 3440x1440 | 34" | 100 Hz | IPS |
Asus | PG278Q | 2014 | 2560x1440 | 27" | 144 Hz | TN |
Asus | PG278QR | 2016 | 2560x1440 | 27" | 165 Hz | TN |
Asus | PG279Q | 2015 | 2560x1440 | 27" | 144 Hz (165 Hz overclocked) | IPS (AHVA) |
Asus | PG27AQ | 2015 | 3840x2160 | 27" | 60 Hz | IPS |
Asus | PG27UQ | 2018 | 3840x2160 | 27" | 144 Hz | IPS (HDR) |
Asus | PG248Q | 2016 | 1920x1080 | 24" | 144 Hz (180 Hz overclocked) | TN |
Asus | PG258Q | 2016 | 1920x1080 | 24.5" | 240 Hz | TN |
BenQ | XL2420G | 2015 | 1920x1080 | 24" | 144 Hz | TN |
Dell | AW3418DW | 2017 | 3440x1440 | 34" | 100 Hz (120 Hz overclocked) | IPS |
Dell | AW2721D [10] | 2020 | 2560x1440 | 27" | 240 Hz | IPS |
Dell | AW3418HW | 2017 | 2560x1080 | 34" | 144 Hz (160 Hz overclocked) | IPS |
Dell | S2716DG | 2016 | 2560x1440 | 27" | 144 Hz | TN |
Dell | S2417DG | 2016 | 2560x1440 | 24" | 144 Hz (165 Hz overclocked) | TN |
Philips | 272G5DYEB | 2014 | 1920x1080 | 27" | 144 Hz | TN |
LG | 32GK850G-B | 2017 | 2560x1440 | 32" | 144 Hz (165 Hz overclocked) | VA |
LG | 34UC89G-B | 2017 | 2560x1080 | 34" | 144 Hz (166 Hz overclocked) | IPS |
ViewSonic | XG2703-GS | 2016 | 2560x1440 | 27" | 144 Hz (165 Hz overclocked) | IPS (AHVA) |
HP | OMEN X Emperium 65 | 2019 | 3840x2160 | 64.5" | 144 Hz | VA |
Acer | X35 | 2019 | 3440x1440 | 35" | 180 Hz (200 Hz overclocked) | VA |
Brand | Model number | Resolution | Size | Refresh rate at native resolution | HDR | Panel technology |
---|---|---|---|---|---|---|
Acer | XB272-HDR | 3840x2160 | 27" | 144 Hz | Yes | IPS |
Acer | Predator BFGD | 3840×2160 | 65" | 120 Hz overclocked | Yes | ? |
AOC | AG273UG | 3840x2160 | 27" | 144 Hz | Yes | IPS |
AOC | AG273QCG | 2560x1440 | 27" | 165 Hz | No | TN |
AOC | AG353UCG | 3440×1440 | 35" | 200 Hz overclocked | Yes | VA |
Asus | PG35VQ | 3440x1440 | 35" | 200 Hz | Yes | AMVA? |
Asus | PG65 | 3840×2160 | 65" | 120 Hz overclocked | Yes | ? |
Architecture | ||||||||
---|---|---|---|---|---|---|---|---|
Kepler | Kepler (refresh) | Maxwell | Pascal | Volta | Turing | Ampere | Ada Lovelace | Blackwell |
GeForce GTX 650 Ti Boost | GeForce GTX 760 | GeForce GTX 745 | GeForce GT 1030 [12] | Titan V | GeForce GTX 1650 | GeForce RTX 3050 | GeForce RTX 4060 | GeForce RTX 5070 |
GeForce GTX 660 | GeForce GTX 770 | GeForce GTX 750 | GeForce GTX 1050 | GeForce GTX 1650 Super | GeForce RTX 3060 | GeForce RTX 4060 Ti | GeForce RTX 5070 Ti | |
GeForce GTX 660 Ti | GeForce GTX 780 | GeForce GTX 750 Ti | GeForce GTX 1050 Ti | GeForce GTX 1660 | GeForce RTX 3060 Ti | GeForce RTX 4070 | GeForce RTX 5080 | |
GeForce GTX 670 | GeForce GTX 780 Ti | GeForce GTX 950 | GeForce GTX 1060 | GeForce GTX 1660 Super | GeForce RTX 3070 | GeForce RTX 4070 Ti | GeForce RTX 5090 | |
GeForce GTX 680 | GeForce GTX Titan | GeForce GTX 960 | GeForce GTX 1070 | GeForce RTX 1660 Ti | GeForce RTX 3070 Ti | GeForce RTX 4080 | ||
GeForce GTX 690 | GeForce GTX Titan Black | GeForce GTX 965M | GeForce GTX 1070 Ti | GeForce RTX 2060 | GeForce RTX 3080 | GeForce RTX 4090 | ||
GeForce GTX Titan Z | GeForce GTX 970 | GeForce GTX 1080 | GeForce RTX 2060 Super | GeForce RTX 3080 Ti | ||||
GeForce GTX 970M | GeForce GTX 1080 Ti | GeForce RTX 2070 | GeForce RTX 3090 | |||||
GeForce GTX 980 | Titan X | GeForce RTX 2070 Super | GeForce RTX 3090 Ti | |||||
GeForce GTX 980M | Titan Xp | GeForce RTX 2080 | ||||||
GeForce GTX 980 Ti | GeForce RTX 2080 Super | |||||||
GeForce GTX Titan X | GeForce RTX 2080 Ti | |||||||
RTX Titan |
Nvidia announced that G-Sync will be available to notebook manufacturers and that in this case, it would not require a special module since the GPU is directly connected to the display without a scaler in between. According to Nvidia, fine tuning is still possible given the fact that all notebooks of the same model will have the same LCD panel, variable overdrive will be calculated by shaders running on the GPU, and a form of frame collision avoidance will also be implemented. [4]
At CES 2018 Nvidia announced a line of large gaming monitors built by HP, Asus and Acer with 65-inch panels, 4K, HDR, as well as G-Sync support. The inclusion of G-Sync modules make the monitors among the first TV-sized displays to feature variable refresh-rates. [13]
At CES 2019, Nvidia announced that they will support variable refresh rate monitors with FreeSync technology under a new standard named G-Sync Compatible. All monitors under this new standard have been tested by Nvidia to meet their baseline requirements for variable refresh rate and will enable G-Sync automatically when used with an Nvidia GPU. [14] However, users with any FreeSync monitor, including those that are not officially certified may choose to enable the G-Sync option in the Nvidia Control Panel. [15] Unlike G-Sync, G-Sync Compatible displays are only compatible with the GTX 10-series and onwards. [16]
Digital Visual Interface (DVI) is a video display interface developed by the Digital Display Working Group (DDWG). The digital interface is used to connect a video source, such as a video display controller, to a display device, such as a computer monitor. It was developed with the intention of creating an industry standard for the transfer of uncompressed digital video content.
A graphics card is a computer expansion card that generates a feed of graphics output to a display device such as a monitor. Graphics cards are sometimes called discrete or dedicated graphics cards to emphasize their distinction to an integrated graphics processor on the motherboard or the central processing unit (CPU). A graphics processing unit (GPU) that performs the necessary computations is the main component in a graphics card, but the acronym "GPU" is sometimes also used to erroneously refer to the graphics card as a whole.
GeForce is a brand of graphics processing units (GPUs) designed by Nvidia and marketed for the performance market. As of the GeForce 40 series, there have been eighteen iterations of the design. The first GeForce products were discrete GPUs designed for add-on graphics boards, intended for the high-margin PC gaming market, and later diversification of the product line covered all tiers of the PC graphics market, ranging from cost-sensitive GPUs integrated on motherboards, to mainstream add-in retail boards. Most recently, GeForce technology has been introduced into Nvidia's line of embedded application processors, designed for electronic handhelds and mobile handsets.
A graphics processing unit (GPU) is a specialized electronic circuit initially designed for digital image processing and to accelerate computer graphics, being present either as a discrete video card or embedded on motherboards, mobile phones, personal computers, workstations, and game consoles. After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Alienware Corporation is an American computer hardware subsidiary brand of Dell. Their product range is dedicated to gaming computers and accessories and can be identified by their alien-themed designs. Alienware was founded in 1996 by Nelson Gonzalez and Alex Aguila. The development of the company is also associated with Frank Azor, Arthur Lewis, Joe Balerdi, and Michael S. Dell (CEO). The company's corporate headquarters is located in The Hammocks, Miami, Florida.
Scalable Link Interface (SLI) is the brand name for a now discontinued multi-GPU technology developed by Nvidia for linking two or more video cards together to produce a single output. SLI is a parallel processing algorithm for computer graphics, meant to increase the available processing power.
DisplayPort (DP) is a proprietary digital display interface developed by a consortium of PC and chip manufacturers and standardized by the Video Electronics Standards Association (VESA). It is primarily used to connect a video source to a display device such as a computer monitor. It can also carry audio, USB, and other forms of data.
Screen tearing is a visual artifact in video display where a display device shows information from multiple frames in a single screen draw.
Unified Video Decoder is the name given to AMD's dedicated video decoding ASIC. There are multiple versions implementing a multitude of video codecs, such as H.264 and VC-1.
PureVideo is Nvidia's hardware SIP core that performs video decoding. PureVideo is integrated into some of the Nvidia GPUs, and it supports hardware decoding of multiple video codec standards: MPEG-2, VC-1, H.264, HEVC, and AV1. PureVideo occupies a considerable amount of a GPU's die area and should not be confused with Nvidia NVENC. In addition to video decoding on chip, PureVideo offers features such as edge enhancement, noise reduction, deinterlacing, dynamic contrast enhancement and color enhancement.
Micro stuttering is a quality defect that manifests as irregular delays between frames rendered by a graphics processing unit (GPU). It causes the instantaneous frame rate of the longest delay to be significantly lower than the frame rate reported by benchmarking applications such as 3DMark, which usually calculate the average frame rate over a longer time interval.
Nvidia 3D Vision is a discontinued stereoscopic gaming kit from Nvidia which consists of LC shutter glasses and driver software which enables stereoscopic vision for any Direct3D game, with various degrees of compatibility. There have been many examples of shutter glasses. Electrically controlled mechanical shutter glasses date back to the middle of the 20th century. LCD shutter glasses appeared in the 1980s, one example of which is Sega's SegaScope. This was available for Sega's game console, the Master System. The NVIDIA 3D Vision gaming kit introduced in 2008 made this technology available for mainstream consumers and PC gamers.
The GeForce 500 series is a series of graphics processing units developed by Nvidia, as a refresh of the Fermi based GeForce 400 series. It was first released on November 9, 2010 with the GeForce GTX 580.
The GeForce 600 series is a series of graphics processing units developed by Nvidia, first released in 2012. It served as the introduction of the Kepler architecture. It is succeeded by the GeForce 700 series.
The GeForce 700 series is a series of graphics processing units developed by Nvidia. While mainly a refresh of the Kepler microarchitecture, some cards use Fermi (GF) and later cards use Maxwell (GM). GeForce 700 series cards were first released in 2013, starting with the release of the GeForce GTX Titan on February 19, 2013, followed by the GeForce GTX 780 on May 23, 2013. The first mobile GeForce 700 series chips were released in April 2013.
The GeForce 900 series is a family of graphics processing units developed by Nvidia, succeeding the GeForce 700 series and serving as the high-end introduction to the Maxwell microarchitecture, named after James Clerk Maxwell. They were produced with TSMC's 28 nm process.
AMD PowerTune is a series of dynamic frequency scaling technologies built into some AMD GPUs and APUs that allow the clock speed of the processor to be dynamically changed by software. This allows the processor to meet the instantaneous performance needs of the operation being performed, while minimizing power draw, heat generation and noise avoidance. AMD PowerTune aims to solve thermal design power and performance constraints.
FreeSync is an adaptive synchronization technology that allows LCD and OLED displays to support a variable refresh rate aimed at avoiding tearing and reducing stuttering caused by misalignment between the screen's refresh rate and the content's frame rate.
GPUOpen is a middleware software suite originally developed by AMD's Radeon Technologies Group that offers advanced visual effects for computer games. It was released in 2016. GPUOpen serves as an alternative to, and a direct competitor of Nvidia GameWorks. GPUOpen is similar to GameWorks in that it encompasses several different graphics technologies as its main components that were previously independent and separate from one another. However, GPUOpen is partially open source software, unlike GameWorks which is proprietary and closed.
Variable refresh rate (VRR) refers to a dynamic display that can continuously and seamlessly change its refresh rate without user input. A display supporting a variable refresh rate usually supports a specific range of refresh rates. This is called the VRR range. The refresh rate can continuously vary seamlessly anywhere within this range.