Ada Lovelace (microarchitecture)

Last updated

Ada Lovelace
LaunchedOctober 12, 2022;18 months ago (2022-10-12)
Designed by Nvidia
Manufactured by
Fabrication processTSMC 4N
Product Series
Desktop
Professional/workstation
  • RTX Ada Generation
Server/datacenter
Specifications
Clock rate 735 MHz to 2640 MHz
L1 cache128 KB (per SM)
L2 cache32 MB to 96 MB
Memory support
Memory clock rate21-22.4 Gbps
PCIe support PCIe 4.0
Supported Graphics APIs
DirectX DirectX 12 Ultimate (Feature Level 12_2)
Direct3D Direct3D 12
Shader Model Shader Model 6.8
OpenCL OpenCL 3.0
OpenGL OpenGL 4.6
CUDA Compute Capability 8.9
Vulkan Vulkan 1.3
Supported Compute APIs
CUDA CUDA Toolkit 11.6
DirectCompute Yes
Media Engine
Encode codecs
Decode codecs
Color bit-depth
  • 8-bit
  • 10-bit
Encoder(s) supported NVENC
Display outputs
History
Predecessor Ampere
Variant Hopper (datacenter)
Successor Blackwell
Support status
Supported

Ada Lovelace, also referred to simply as Lovelace, [1] is a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to the Ampere architecture, officially announced on September 20, 2022. It is named after the English mathematician Ada Lovelace, [2] one of the first computer programmers. Nvidia announced the architecture along with the GeForce RTX 40 series consumer GPUs [3] and the RTX 6000 Ada Generation workstation graphics card. [4] The Lovelace architecture is fabricated on TSMC's custom 4N process which offers increased efficiency over the previous Samsung 8 nm and TSMC N7 processes used by Nvidia for its previous-generation Ampere architecture. [5]

Contents

Background

Ada Lovelace (1815-1852) Ada Lovelace portrait.jpg
Ada Lovelace (1815–1852)

The Ada Lovelace architecture follows on from the Ampere architecture that was released in 2020. The Ada Lovelace architecture was announced by Nvidia CEO Jensen Huang during a GTC 2022 keynote on September 20, 2022 with the architecture powering Nvidia's GPUs for gaming, workstations and datacenters. [6]

Architectural details

Architectural improvements of the Ada Lovelace architecture include the following: [7]

Streaming multiprocessors (SMs)

CUDA cores

128 CUDA cores are included in each SM.

RT cores

Ada Lovelace features third-generation RT cores. The RTX 4090 features 128 RT cores compared to the 84 in the previous generation RTX 3090 Ti. These 128 RT cores can provide up to 191 TFLOPS of compute with 1.49 TFLOPS per RT core. [14] A new stage in the ray tracing pipeline called Shader Execution Reordering (SER) is added in the Lovelace architecture which Nvidia claims provides a 2x performance improvement in ray tracing workloads. [6]

Tensor cores

Lovelace's new fourth-generation Tensor cores enable the AI technology used in DLSS 3's frame generation techniques. Much like Ampere, each SM contains 4 Tensor cores but Lovelace contains a greater number of Tensor cores overall given its increased number of SMs.

Clock speeds

There is a significant increase in clock speeds with the Ada Lovelace architecture with the RTX 4090's base clock speed being higher than the boost clock speed of the RTX 3090 Ti.

RTX 2080 TiRTX 3090 TiRTX 4090
Architecture Turing Ampere Ada Lovelace
Base clock speed
(MHz)
135015602235
Boost clock speed
(MHz)
163518602520

Cache and memory subsystem

RTX 2080 TiRTX 3090 TiRTX 4090
Architecture Turing Ampere Ada Lovelace
L1 Data Cache6.375 MB
(96 KB per SM)
10.5 MB
(128 KB per SM)
16 MB
(128 KB per SM)
L2 Cache5.5 MB6 MB72 MB

The fully enabled AD102 Lovelace die features 96 MB of L2 cache, a 16x increase from the 6 MB in the Ampere-based GA102 die. [15] The GPU having quick access to a high amount of L2 cache benefits complex operations like ray tracing compared to the GPU seeking data from the GDDR video memory which is slower. Relying less on accessing memory for storing important and frequently accessed data means that a narrower memory bus width can be used in tandem with a large L2 cache.

Each memory controller uses a 32-bit connection with up to 12 present for a combined memory bus width of 384-bit. The Lovelace architecture can use either GDDR6 or GDDR6X memory. GDDR6X memory features on the desktop GeForce RTX 40 series while the more energy-efficient GDDR6 memory is used on its corresponding mobile versions and on RTX A6000 workstation GPUs.

Power efficiency and process node

The Ada Lovelace architecture is able to use lower voltages compared to its predecessor. [6] Nvidia claims a 2x performance increase for the RTX 4090 at the same 450W used by the previous generation flagship RTX 3090 Ti. [16]

Increased power efficiency can be attributed in part to the smaller fabrication node used by the Lovelace architecture. The Ada Lovelace architecture is fabricated on TSMC's cutting-edge 4N process, a custom designed process node for Nvidia. The previous generation Ampere architecture used Samsung's 8nm-based 8N process node from 2018, which was two years old by the time of Ampere's launch. [17] [18] The AD102 die with its 76.3 billion transistors has a transistor density of 125.5 million per mm2, a 178% increase in density from GA102's 45.1 million per mm2.

Media engine

The Lovelace architecture utilizes the new 8th generation Nvidia NVENC video encoder and the 7th generation NVDEC video decoder introduced by Ampere returns. [19]

NVENC AV1 hardware encoding with support for up to 8K resolution at 60FPS in 10-bit color is added, enabling higher video fidelity at lower bit rates compared to the H.264 and H.265 codecs. [20] Nvidia claims that its NVENC AV1 encoder featured in the Lovelace architecture is 40% more efficient than the H.264 encoder in the Ampere architecture. [21]

The Lovelace architecture received criticism for not supporting the DisplayPort 2.0 connection that supports higher display data bandwidth and instead uses the older DisplayPort 1.4a which is limited to a peak bandwidth of 32 Gbps. [22] As a result, Lovelace GPUs would be limited by DisplayPort 1.4a's supported refresh rates despite the GPU's performance being able to reach higher frame rates. Intel's Arc GPUs that also released in October 2022 included DisplayPort 2.0. AMD's competing RDNA 3 architecture released just two months after Lovelace included DisplayPort 2.1. [23]

Ada Lovelace dies

Die [24] AD102 [25] AD103 [26] AD104 [27] AD106 [28] AD107 [29]
Die size609 mm2379 mm2294 mm2188 mm2159 mm2
Transistors76.3B45.9B35.8B22.9B18.9B
Transistor density125.3 MTr/mm2121.1 MTr/mm2121.8 MTr/mm2121.8 MTr/mm2118.9 MTr/mm2
Graphics processing clusters127532
Streaming multiprocessors14480603624
CUDA cores 1843210240768046083072
Texture mapping units 57632024014496
Render output units 192112804848
Tensor cores 57632024014496
RT cores 14480603624
L1 cache 18 MB10 MB7.5 MB4.5 MB3 MB
128 KB per SM
L2 cache96 MB64 MB48 MB32 MB

Ada Lovelace-based products

Consumer

Desktop

  • GeForce 40 series
    • GeForce RTX 4060 (AD107)
    • GeForce RTX 4060 Ti (AD106)
    • GeForce RTX 4070 (AD104)
    • GeForce RTX 4070 SUPER (AD104)
    • GeForce RTX 4070 Ti (AD104)
    • GeForce RTX 4070 Ti SUPER (AD103)
    • GeForce RTX 4080 (AD103)
    • GeForce RTX 4080 SUPER (AD103)
    • GeForce RTX 4090 D (AD102)
    • GeForce RTX 4090 (AD102)

Mobile

  • GeForce 40 series
    • GeForce RTX 4050 Laptop (AD107)
    • GeForce RTX 4060 Laptop (AD107)
    • GeForce RTX 4070 Laptop (AD106)
    • GeForce RTX 4080 Laptop (AD104)
    • GeForce RTX 4090 Laptop (AD103)

Professional

Desktop workstation

  • Nvidia Workstation GPUs (formerly Quadro)
    • Nvidia RTX 2000 Ada Generation (AD107)
    • Nvidia RTX 4000 Ada Generation (AD104)
    • Nvidia RTX 4000 SFF Ada Generation (AD104)
    • Nvidia RTX 4500 Ada Generation (AD104)
    • Nvidia RTX 5000 Ada Generation (AD102)
    • Nvidia RTX 5880 Ada Generation (AD102)
    • Nvidia RTX 6000 Ada Generation (AD102)

Mobile workstation

  • Nvidia Workstation GPUs (formerly Quadro)
    • Nvidia RTX 2000 Max-Q Ada Generation Laptop (AD107)
    • Nvidia RTX 2000 Ada Generation Laptop (AD107)
    • Nvidia RTX 3000 Ada Generation Laptop (AD106)
    • Nvidia RTX 3500 Ada Generation Laptop (AD104)
    • Nvidia RTX 4000 Ada Generation Laptop (AD104)
    • Nvidia RTX 5000 Ada Generation Laptop (AD103)

Datacenter

See also

Related Research Articles

<span class="mw-page-title-main">GeForce</span> Brand of GPUs by Nvidia

GeForce is a brand of graphics processing units (GPUs) designed by Nvidia and marketed for the performance market. As of the GeForce 40 series, there have been eighteen iterations of the design. The first GeForce products were discrete GPUs designed for add-on graphics boards, intended for the high-margin PC gaming market, and later diversification of the product line covered all tiers of the PC graphics market, ranging from cost-sensitive GPUs integrated on motherboards, to mainstream add-in retail boards. Most recently, GeForce technology has been introduced into Nvidia's line of embedded application processors, designed for electronic handhelds and mobile handsets.

<span class="mw-page-title-main">Alienware</span> American computer hardware subsidiary of Dell Inc.

Alienware Corporation is an American computer hardware subsidiary brand of Dell. Their product range is dedicated to gaming computers and can be identified by their alien-themed designs. Alienware was founded in 1996 by Nelson Gonzalez and Alex Aguila. The development of the company is also associated with Frank Azor, Arthur Lewis, Joe Balerdi, and Michael S. Dell. The company's corporate headquarters is located in The Hammocks, Miami, Florida.

<span class="mw-page-title-main">Quadro</span> Brand of Nvidia graphics cards used in workstations

Quadro was Nvidia's brand for graphics cards intended for use in workstations running professional computer-aided design (CAD), computer-generated imagery (CGI), digital content creation (DCC) applications, scientific calculations and machine learning from 2000 to 2020.

PureVideo is Nvidia's hardware SIP core that performs video decoding. PureVideo is integrated into some of the Nvidia GPUs, and it supports hardware decoding of multiple video codec standards: MPEG-2, VC-1, H.264, HEVC, and AV1. PureVideo occupies a considerable amount of a GPU's die area and should not be confused with Nvidia NVENC. In addition to video decoding on chip, PureVideo offers features such as edge enhancement, noise reduction, deinterlacing, dynamic contrast enhancement and color enhancement.

<span class="mw-page-title-main">GeForce 200 series</span> Series of GPUs by Nvidia

The GeForce 200 series is a series of Tesla-based GeForce graphics processing units developed by Nvidia.

<span class="mw-page-title-main">GeForce 600 series</span> Series of GPUs by Nvidia

The GeForce 600 series is a series of graphics processing units developed by Nvidia, first released in 2012. It served as the introduction of the Kepler architecture. It is succeeded by the GeForce 700 series.

<span class="mw-page-title-main">GeForce 10 series</span> Series of GPUs by Nvidia

The GeForce 10 series is a series of graphics processing units developed by Nvidia, initially based on the Pascal microarchitecture announced in March 2014. This design series succeeded the GeForce 900 series, and is succeeded by the GeForce 16 series and GeForce 20 series using the Turing microarchitecture.

<span class="mw-page-title-main">Nvidia Tesla</span> Nvidias line of general purpose GPUs

Nvidia Tesla is the former name for a line of products developed by Nvidia targeted at stream processing or general-purpose graphics processing units (GPGPU), named after pioneering electrical engineer Nikola Tesla. Its products began using GPUs from the G80 series, and have continued to accompany the release of new chips. They are programmable using the CUDA or OpenCL APIs.

Nvidia NVENC is a feature in Nvidia graphics cards that performs video encoding, offloading this compute-intensive task from the CPU to a dedicated part of the GPU. It was introduced with the Kepler-based GeForce 600 series in March 2012.

<span class="mw-page-title-main">Nvidia RTX</span> Development platform for rendering graphics

Nvidia RTX is a professional visual computing platform created by Nvidia, primarily used in workstations for designing complex large-scale models in architecture and product design, scientific visualization, energy exploration, and film and video production, as well as being used in mainstream PCs for gaming.

<span class="mw-page-title-main">GeForce 20 series</span> Series of GPUs by Nvidia

The GeForce 20 series is a family of graphics processing units developed by Nvidia. Serving as the successor to the GeForce 10 series, the line started shipping on September 20, 2018, and after several editions, on July 2, 2019, the GeForce RTX Super line of cards was announced.

<span class="mw-page-title-main">Turing (microarchitecture)</span> GPU microarchitecture by Nvidia

Turing is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia. It is named after the prominent mathematician and computer scientist Alan Turing. The architecture was first introduced in August 2018 at SIGGRAPH 2018 in the workstation-oriented Quadro RTX cards, and one week later at Gamescom in consumer GeForce 20 series graphics cards. Building on the preliminary work of Volta, its HPC-exclusive predecessor, the Turing architecture introduces the first consumer products capable of real-time ray tracing, a longstanding goal of the computer graphics industry. Key elements include dedicated artificial intelligence processors and dedicated ray tracing processors. Turing leverages DXR, OptiX, and Vulkan for access to ray tracing. In February 2019, Nvidia released the GeForce 16 series GPUs, which utilizes the new Turing design but lacks the RT and Tensor cores.

<span class="mw-page-title-main">GeForce 16 series</span> Series of GPUs by Nvidia

The GeForce 16 series is a series of graphics processing units developed by Nvidia, based on the Turing microarchitecture, announced in February 2019. The 16 series, commercialized within the same timeframe as the 20 series, aims to cover the entry-level to mid-range market, not addressed by the latter. As a result, the media have mainly compared it to AMD's Radeon RX 500 series of GPUs.

<span class="mw-page-title-main">Ampere (microarchitecture)</span> GPU microarchitecture by Nvidia

Ampere is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to both the Volta and Turing architectures. It was officially announced on May 14, 2020 and is named after French mathematician and physicist André-Marie Ampère.

<span class="mw-page-title-main">GeForce 30 series</span> GPU series by Nvidia

The GeForce 30 series is a suite of graphics processing units (GPUs) designed and marketed by Nvidia, succeeding the GeForce 20 series. The GeForce 30 series is based on the Ampere architecture, which features Nvidia's second-generation ray tracing (RT) cores and third-generation Tensor Cores. Through Nvidia RTX, hardware-enabled ray tracing is possible on GeForce 30 series cards.

<span class="mw-page-title-main">Radeon RX 6000 series</span> Series of video cards by AMD

The Radeon RX 6000 series is a series of graphics processing units developed by AMD, based on their RDNA 2 architecture. It was announced on October 28, 2020 and is the successor to the Radeon RX 5000 series. It consists of the entry-level RX 6400, mid-range RX 6500 XT, high-end RX 6600, RX 6600 XT, RX 6650 XT, RX 6700, RX 6700 XT, upper high-end RX 6750 XT, RX 6800, RX 6800 XT, and enthusiast RX 6900 XT and RX 6950 XT for desktop computers; and the RX 6600M, RX 6700M, and RX 6800M for laptops. A sub-series for mobile, Radeon RX 6000S, was announced in CES 2022, targeting thin and light laptop designs.

<span class="mw-page-title-main">RDNA 3</span> GPU microarchitecture by AMD

RDNA 3 is a GPU microarchitecture designed by AMD, released with the Radeon RX 7000 series on December 13, 2022. Alongside powering the RX 7000 series, RDNA 3 is also featured in the SoCs designed by AMD for the Asus ROG Ally and Lenovo Legion Go consoles.

<span class="mw-page-title-main">GeForce 40 series</span> Series of graphics processing units developed by Nvidia

The GeForce 40 series is a family of graphics processing units developed by Nvidia, succeeding the GeForce 30 series. The series was announced on September 20, 2022, at the GPU Technology Conference (GTC) 2022 event.

<span class="mw-page-title-main">Radeon RX 7000 series</span> Series of video cards by AMD

The Radeon RX 7000 series is a series of graphics processing units developed by AMD, based on their RDNA 3 architecture. It was announced on November 3, 2022 and is the successor to the Radeon RX 6000 series. Currently AMD has announced and released seven graphics cards of the Radeon RX 7000 series: RX 7600, RX 7600 XT, RX 7700 XT, RX 7800 XT, RX 7900 GRE, RX 7900 XT, and RX 7900 XTX. AMD officially launched the RX 7900 XT and RX 7900 XTX on December 13, 2022. AMD released the RX 7600 on May 25, 2023. AMD released their last two models of the RDNA 3 family on September 6, 2023; the 7700 XT and the 7800 XT. As of January 2024, AMD have also released the RX 7600 XT and the RX 7900 GRE.

References

  1. Freund, Karl (September 20, 2022). "Nvidia Launches Lovelace GPU, Cloud Services, Ships H100 GPUs, New Drive Thor". Forbes. Retrieved November 18, 2022.
  2. Mujtaba, Hassan (September 15, 2022). "Nvidia's Next-Gen Ada Lovelace Gaming GPU Architecture For GeForce RTX 40 Series Confirmed". Wccftech. Retrieved November 18, 2022.
  3. "Nvidia Delivers Quantum Leap in Performance, Introduces New Era of Neural Rendering with GeForce RTX 40 Series". Nvidia Newsroom (Press release). September 20, 2022. Retrieved September 20, 2022.
  4. "Nvidia's New Ada Lovelace RTX GPU Arrives for Designers and Creators". Nvidia Newsroom. September 20, 2022. Retrieved November 18, 2022.
  5. Machkovec, Sam (September 20, 2022). "Nvidia's Ada Lovelace GPU generation: $1,599 for RTX 4090, $899 and up for 4080". Ars Technica. Retrieved November 18, 2022.
  6. 1 2 3 Chiappetta, Marco (September 22, 2022). "NVIDIA GeForce RTX 40 Architecture Overview: Ada's Special Sauce Unveiled". HotHardware. Retrieved April 8, 2023.
  7. "NVIDIA Ada Lovelace Architecture". NVIDIA. September 20, 2022. Retrieved September 20, 2022.
  8. "CUDA C++ Programming Guide". docs.nvidia.com. Retrieved April 15, 2023.
  9. "Improve Shader Performance and In-Game Frame Rates with Shader Execution Reordering". NVIDIA Technical Blog. October 13, 2022. Retrieved April 6, 2023.
  10. Deigado, Gerado (September 20, 2022). "Creativity At The Speed of Light: GeForce RTX 40 Series Graphics Cards Unleash Up To 2X Performance in 3D Rendering, AI, and Video Exports For Gamers and Creators". NVIDIA. Retrieved September 20, 2022.
  11. "Nvidia Video Codec SDK". NVIDIA Developer. September 20, 2022. Retrieved November 18, 2022.
  12. Chuong Nguyen (September 21, 2022). "Nvidia kills off NVLink on RTX 4090". Windows Central. Retrieved January 1, 2023.
  13. btarunr (September 21, 2022). "Jensen Confirms: NVLink Support in Ada Lovelace is Gone". TechPowerUp. Retrieved November 18, 2022.
  14. "Nvidia Ada Lovelace GPU Architecture: Designed to deliver outstanding gaming and creating, professional graphics, AI, and compute performance" (PDF). Nvidia. p. 30. Retrieved April 5, 2023.
  15. "Nvidia Ada Lovelace GPU Architecture: Designed to deliver outstanding gaming and creating, professional graphics, AI, and compute performance" (PDF). Nvidia. p. 12. Retrieved April 6, 2023.
  16. "Nvidia Ada Lovelace GPU Architecture: Designed to deliver outstanding gaming and creating, professional graphics, AI, and compute performance" (PDF). Nvidia. p. 12. Retrieved April 5, 2023.
  17. James, Dave (September 1, 2020). "Nvidia confirms Samsung 8nm process for RTX 3090, RTX 3080, and RTX 3070". PC Gamer. Retrieved April 5, 2023.
  18. Bosnjak, Dominik (September 1, 2020). "Samsung's old 8nm tech at the heart of NVIDIA's monstrous Ampere cards". SamMobile. Retrieved April 5, 2023.
  19. "Nvidia Ada Lovelace GPU Architecture: Designed to deliver outstanding gaming and creating, professional graphics, AI, and compute performance" (PDF). Nvidia. p. 25. Retrieved April 5, 2023.
  20. Muthana, Prathap; Mishra, Sampurnananda; Patait, Abhijit (January 18, 2023). "Improving Video Quality and Performance with AV1 and NVIDIA Ada Lovelace Architecture". Nvidia Developer. Retrieved April 5, 2023.
  21. "Nvidia Ada Science: How Ada advances the science of graphics with DLSS 3" (PDF). Nvidia. p. 13. Retrieved April 5, 2023.
  22. Garreffa, Anthony (September 25, 2022). "NVIDIA's next-gen GeForce RTX 40 series lack DP2.0 connectivity, silly". TweakTown. Retrieved April 5, 2023.
  23. Judd, Will (November 3, 2022). "AMD announces 7900 XTX and 7900 XT graphics cards with FSR 3". Eurogamer. Retrieved April 5, 2023.
  24. "NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102". VideoCardz. September 23, 2022. Retrieved September 23, 2022.
  25. "NVIDIA AD102 GPU Specs". TechPowerUp. Retrieved December 17, 2022.
  26. "NVIDIA AD103 GPU Specs". TechPowerUp. Retrieved December 17, 2022.
  27. "NVIDIA AD104 GPU Specs". TechPowerUp. Retrieved October 18, 2022.
  28. "NVIDIA AD106 GPU Specs". TechPowerUp. Retrieved December 17, 2022.
  29. "NVIDIA AD107 GPU Specs". TechPowerUp. Retrieved December 17, 2022.