Incentive spirometer

Last updated
Incentive spirometer
Incentive spirometer.jpg
A typical incentive spirometer consists of an inhalation nozzle, which is seen facing toward the camera. The curved plastic on the left is a handle. The piston is in the middle (along with an adjustable mark to indicate a goal), and on the right side is a flow indicator showing whether the patient is inhaling too rapidly.
Specialty Pulmonology

An incentive spirometer is a handheld medical device used to help patients improve the functioning of their lungs. By training patients to take slow and deep breaths, this simplified spirometer facilitates lung expansion and strengthening. Patients inhale through a mouthpiece, which causes a piston inside the device to rise. This visual feedback helps them monitor their inspiratory effort. Incentive spirometers are commonly used after surgery or certain illnesses to prevent pulmonary complications.

Contents

Overview

Incentive spirometer is indicated for patients who have had any surgery that might jeopardize respiratory function, particularly surgery to the lungs, [1] but also to patients recovering from cardiac or other surgery involving extended time under anesthesia and prolonged in-bed recovery. Under general anesthesia and inactivity, a patient's breathing may slow, causing air sacs in their lungs to not fully inflate. Atelectasis can develop and, if unmanaged, lead to pneumonia and postoperative fever. Pneumonia is a major lung complication associated with increased morbidity and mortality, length of hospital stay, and likelihood of hospital readmissions. [2] In conjunction with breathing exercises and early mobility, incentive spirometry use is therefore beneficial for patients recovering from pneumonia or rib damage to help minimize the chance of fluid build-up in the lungs. Because of its role in pulmonary rehabilitation and inspiratory muscle training, this device may theoretically benefit patients with COVID-19. [3] It may be used as well by wind instrument players who want to improve their air flow.[ citation needed ]

Indications

Incentive spirometer is indicated for the following reasons: [4]

Contraindications

While there are no absolute contraindications for spirometry use, inspiratory muscle training can worsen some existing medical conditions, including the following: [4]

Usage

Depiction of the components of an incentive spirometer. The user is seated upright and holds the device in front of them. They breathe in air through the mouthpiece while watching the piston rise towards the goal marker. Incentive Spirometer.png
Depiction of the components of an incentive spirometer. The user is seated upright and holds the device in front of them. They breathe in air through the mouthpiece while watching the piston rise towards the goal marker.

Patient starts in a seated upright position. Patient exhales completely before using device. The patient then places the mouthpiece into their mouth and seals their lips tightly around it. The patient breathes in from the device as slowly and as deeply as possible, then holds that breath in for 2–6 seconds. This provides back pressure that pops open alveoli. It has the same effect as that which occurs during yawning. An indicator piston driven by the patient's breathing provides a gauge of how well the patient's lungs (or lung if singular) are functioning, by indicating sustained inhalation vacuum. While the patient is holding their breath, the indicator piston will slowly return to the bottom of the column. Patient then removes the mouthpiece from their mouth and exhales normally. Coughing can be expected to clear the airway and lungs of mucus. Patients are encouraged to rest if they begin feeling dizzy. [1]

Generally, patients are encouraged to do many repetitions a day while measuring progress by way of advancing the movable gauge along the central column of the device as they improve.[ citation needed ]

Alternative approach for children

Traditional incentive spirometers can be more challenging for children due to compliance and submaximal effort. [9] Age-appropriate devices including whistles, pinwheels, and bubble wands should be considered. [10] These toys and activities reinforce proper breathing mechanics by stimulating deep inhalation and prolonged exhalation.[ citation needed ]

Additional images

Another example of an incentive spirometer Incentive spirometer2.JPG
Another example of an incentive spirometer

See also

Related Research Articles

<span class="mw-page-title-main">Mechanical ventilation</span> Method to mechanically assist or replace spontaneous breathing

Mechanical ventilation or assisted ventilation is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move air into and out of the lungs, with the main goal of helping the delivery of oxygen and removal of carbon dioxide. Mechanical ventilation is used for many reasons, including to protect the airway due to mechanical or neurologic cause, to ensure adequate oxygenation, or to remove excess carbon dioxide from the lungs. Various healthcare providers are involved with the use of mechanical ventilation and people who require ventilators are typically monitored in an intensive care unit.

<span class="mw-page-title-main">Lung volumes</span> Volume of air in the lungs

Lung volumes and lung capacities refer to the volume of air in the lungs at different phases of the respiratory cycle.

<span class="mw-page-title-main">Pleurisy</span> Disease of the lungs

Pleurisy, also known as pleuritis, is inflammation of the membranes that surround the lungs and line the chest cavity (pleurae). This can result in a sharp chest pain while breathing. Occasionally the pain may be a constant dull ache. Other symptoms may include shortness of breath, cough, fever, or weight loss, depending on the underlying cause. Pleurisy can be caused by a variety of conditions, including viral or bacterial infections, autoimmune disorders, and pulmonary embolism.

<span class="mw-page-title-main">Bronchiectasis</span> Disease of the lungs

Bronchiectasis is a disease in which there is permanent enlargement of parts of the airways of the lung. Symptoms typically include a chronic cough with mucus production. Other symptoms include shortness of breath, coughing up blood, and chest pain. Wheezing and nail clubbing may also occur. Those with the disease often get lung infections.

Crackles are the clicking, rattling, or crackling noises that may be made by one or both lungs of a human with a respiratory disease during inhalation, and occasionally during exhalation. They are usually heard only with a stethoscope. Pulmonary crackles are abnormal breath sounds that were formerly referred to as rales.

<span class="mw-page-title-main">Spirometer</span> Apparatus for measuring air volume inspired and expired by the lungs

A spirometer is an apparatus for measuring the volume of air inspired and expired by the lungs. A spirometer measures ventilation, the movement of air into and out of the lungs. The spirogram will identify two different types of abnormal ventilation patterns, obstructive and restrictive. There are various types of spirometers that use a number of different methods for measurement.

<span class="mw-page-title-main">Exhalation</span> Flow of the respiratory current out of an organism

Exhalation is the flow of the breath out of an organism. In animals, it is the movement of air from the lungs out of the airways, to the external environment during breathing. This happens due to elastic properties of the lungs, as well as the internal intercostal muscles which lower the rib cage and decrease thoracic volume. As the thoracic diaphragm relaxes during exhalation it causes the tissue it has depressed to rise superiorly and put pressure on the lungs to expel the air. During forced exhalation, as when blowing out a candle, expiratory muscles including the abdominal muscles and internal intercostal muscles generate abdominal and thoracic pressure, which forces air out of the lungs.

<span class="mw-page-title-main">Spirometry</span> Pulmonary function test

Spirometry is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is helpful in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD. It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time.

<span class="mw-page-title-main">Plethysmograph</span> Medical instrument for measuring changes in volume

A plethysmograph is an instrument for measuring changes in volume within an organ or whole body. The word is derived from the Greek "plethysmos", and "graphein".

<span class="mw-page-title-main">Atelectasis</span> Partial collapse of a lung causing reduced gas exchange

Atelectasis is the partial collapse or closure of a lung resulting in reduced or absent gas exchange. It is usually unilateral, affecting part or all of one lung. It is a condition where the alveoli are deflated down to little or no volume, as distinct from pulmonary consolidation, in which they are filled with liquid. It is often referred to informally as a collapsed lung, although more accurately it usually involves only a partial collapse, and that ambiguous term is also informally used for a fully collapsed lung caused by a pneumothorax.

<span class="mw-page-title-main">Inhaler</span> Medical device used to deliver medicines into lungs

An inhaler is a medical device used for delivering medicines into the lungs through the work of a person's breathing. This allows medicines to be delivered to and absorbed in the lungs, which provides the ability for targeted medical treatment to this specific region of the body, as well as a reduction in the side effects of oral medications. There are a wide variety of inhalers, and they are commonly used to treat numerous medical conditions with asthma and chronic obstructive pulmonary disease (COPD) being among the most notable.

<span class="mw-page-title-main">Rib fracture</span> Break in a rib bone

A rib fracture is a break in a rib bone. This typically results in chest pain that is worse with inspiration. Bruising may occur at the site of the break. When several ribs are broken in several places a flail chest results. Potential complications include a pneumothorax, pulmonary contusion, and pneumonia.

<span class="mw-page-title-main">Pneumomediastinum</span> Abnormal presence of gas in the thorax

Pneumomediastinum is pneumatosis in the mediastinum, the central part of the chest cavity. First described in 1819 by René Laennec, the condition can result from physical trauma or other situations that lead to air escaping from the lungs, airways, or bowel into the chest cavity. In underwater divers it is usually the result of pulmonary barotrauma.

<span class="mw-page-title-main">Pulmonary function testing</span> Test to evaluate respiratory system

Pulmonary function testing (PFT) is a complete evaluation of the respiratory system including patient history, physical examinations, and tests of pulmonary function. The primary purpose of pulmonary function testing is to identify the severity of pulmonary impairment. Pulmonary function testing has diagnostic and therapeutic roles and helps clinicians answer some general questions about patients with lung disease. PFTs are normally performed by a pulmonary function technician, respiratory therapist, respiratory physiologist, physiotherapist, pulmonologist, or general practitioner.

Pulmonary hygiene, also referred to as pulmonary toilet, is a set of methods used to clear mucus and secretions from the airways. The word pulmonary refers to the lungs. The word toilet, related to the French toilette, refers to body care and hygiene; this root is used in words such as toiletry that also relate to cleansing.

Pulmonary rehabilitation, also known as respiratory rehabilitation, is an important part of the management and health maintenance of people with chronic respiratory disease who remain symptomatic or continue to have decreased function despite standard medical treatment. It is a broad therapeutic concept. It is defined by the American Thoracic Society and the European Respiratory Society as an evidence-based, multidisciplinary, and comprehensive intervention for patients with chronic respiratory diseases who are symptomatic and often have decreased daily life activities. In general, pulmonary rehabilitation refers to a series of services that are administered to patients of respiratory disease and their families, typically to attempt to improve the quality of life for the patient. Pulmonary rehabilitation may be carried out in a variety of settings, depending on the patient's needs, and may or may not include pharmacologic intervention.

<span class="mw-page-title-main">Respiratory inductance plethysmography</span>

Respiratory inductance plethysmography (RIP) is a method of evaluating pulmonary ventilation by measuring the movement of the chest and abdominal wall.

Intermittent positive pressure breathing (IPPB) is a respiratory therapy treatment for people who are hypoventilating. While not a preferred method due to cost, IPPB is used to expand the lungs, deliver aerosol medications, and in some circumstances ventilate the patient.

William Pasteur (1855–1943) was a British physician and pioneer of pulmonology.

<span class="mw-page-title-main">Pulmonary drug delivery</span>

Pulmonary drug delivery is a route of administration in which patients use an inhaler to inhale their medications and drugs are absorbed into the bloodstream via the lung mucous membrane. This technique is most commonly used in the treatment of lung diseases, for example, asthma and chronic obstructive pulmonary disease (COPD). Different types of inhalers include metered-dose inhalers (MDI), dry powder inhalers (DPI), soft mist inhalers (SMI) and nebulizers. The rate and efficacy of pulmonary drug delivery are affected by drug particle properties, breathing patterns and respiratory tract geometry.

References

  1. 1 2 "How to use an incentive spirometer". The Cleveland Clinic Foundation. Retrieved 2013-11-03.
  2. Chughtai, Morad; Gwam, Chukwuweike U.; Mohamed, Nequesha; Khlopas, Anton; Newman, Jared M.; Khan, Rafay; Nadhim, Ali; Shaffiy, Shervin; Mont, Michael A. (2017). "The Epidemiology and Risk Factors for Postoperative Pneumonia". Journal of Clinical Medicine Research. 9 (6): 466–475. doi:10.14740/jocmr3002w. PMC   5412519 . PMID   28496546.
  3. Seyller, Hannah; Gottlieb, Michael; Colla, Joseph (October 2021). "A breath of fresh air: The role of incentive spirometry in the treatment of COVID-19". The American Journal of Emergency Medicine. 48: 369. doi:10.1016/j.ajem.2021.01.084. PMC   8500986 . PMID   33558097.
  4. 1 2 Franklin, Emily; Anjum, Fatima (2022). "Incentive Spirometer and Inspiratory Muscle Training". StatPearls. StatPearls Publishing. PMID   34283480.
  5. Bernal-Utrera, Carlos; Anarte-Lazo, Ernesto; Gonzalez-Gerez, Juan Jose; De-La-Barrera-Aranda, Elena; Saavedra-Hernandez, Manuel; Rodriguez-Blanco, Cleofas (8 February 2021). "Could Physical Therapy Interventions Be Adopted in the Management of Critically Ill Patients with COVID-19? A Scoping Review". International Journal of Environmental Research and Public Health. 18 (4): 1627. doi: 10.3390/ijerph18041627 . PMC   7915254 . PMID   33567748.
  6. Shan, Mia X; Tran, Yen M; Vu, Kim T; Eapen, Blessen C (August 2020). "Postacute inpatient rehabilitation for COVID-19". BMJ Case Reports. 13 (8): e237406. doi:10.1136/bcr-2020-237406. PMC   7437681 . PMID   32816941.
  7. Sum, Shao-Kai; Peng, Ya-Chuan; Yin, Shun-Ying; Huang, Pin-Fu; Wang, Yao-Chang; Chen, Tzu-Ping; Tung, Heng-Hsin; Yeh, Chi-Hsiao (December 2019). "Using an incentive spirometer reduces pulmonary complications in patients with traumatic rib fractures: a randomized controlled trial". Trials. 20 (1): 797. doi: 10.1186/s13063-019-3943-x . PMC   6937666 . PMID   31888765.
  8. Kenny, Jon-Emile S; Kuschner, Ware G (July 2013). "Pneumothorax Caused by Aggressive Use of an Incentive Spirometer in a Patient With Emphysema". Respiratory Care. 58 (7): e77–e79. doi: 10.4187/respcare.02130 . PMID   23232741. S2CID   74429.
  9. Gupta, Anish; Mishra, Priyanka; Gupta, Bhavna; Kakkar, Kamna (2021). "A kid-friendly approach to Incentive Spirometry". Annals of Cardiac Anaesthesia. 24 (2): 238–240. doi: 10.4103/aca.ACA_188_19 . PMC   8253039 . PMID   33884984.
  10. Schivinski, Camila Isabel Santos; Manna, Bruna Cardoso; Belém, Fabíula Joanita da Mata; Castilho, Tayná (2020). "Therapeutic blowing toys: does the overlap of ventilatory stimuli alter the respiratory mechanics of healthy schoolchildren?". Revista Paulista de Pediatria. 38: e2018259. doi:10.1590/1984-0462/2020/38/2018259. PMC   7063596 . PMID   32159645.