Infinity mirror

Last updated
An infinity mirror effect viewed between paired mirrors in a public bathroom Infinity mirror in a public bathroom.jpg
An infinity mirror effect viewed between paired mirrors in a public bathroom

The infinity mirror (also sometimes called an infinite mirror) is a configuration of two or more parallel or angled mirrors, which are arranged to create a series of smaller and smaller reflections that appear to recede to infinity. [1] [2] Often the front mirror of an infinity mirror is half-silvered (a so-called one way mirror), but this is not required to produce the effect. A similar appearance in artworks has been called the Droste effect. Infinity mirrors are sometimes used as room accents or in works of art. [3]

Contents

Descriptions

A self-contained infinity mirror used as a wall decoration Infinity Mirror.png
A self-contained infinity mirror used as a wall decoration

In a classic self-contained infinity mirror, a set of light bulbs, LEDs, or other point-source lights are placed around the periphery of a fully reflective mirror, and a second, partially reflective "one-way mirror" is placed a short distance in front of it, in a parallel alignment. When an outside observer looks into the surface of the partially reflective mirror, the lights appear to recede into infinity, creating the appearance of a tunnel of great depth that is lined with lights. [2]

If the mirrors are not precisely parallel but instead are canted at a slight angle, the "visual tunnel" will be perceived to be curved off to one side, as it recedes into infinity. Alternatively, this effect can also be seen when an observer stands between two parallel fully reflective mirrors, as in some dressing rooms, some elevators, or a house of mirrors. [1] A weaker version of this effect can be seen by standing between any two parallel reflective surfaces, such as the glass walls of a small entry lobby into some buildings. The partially-reflective glass produces this sensation, diluted by the visual noise of the views through the glass into the surrounding environment.[ citation needed ]

Explanation of effect

The 3D illusion mirror effect is produced whenever there are two parallel reflective surfaces which can bounce a beam of light back and forth an indefinite (theoretically infinite) number of times. The reflections appear to recede into the distance because the light actually is traversing the distance it appears to be traveling. The reflections may also appear to dim in the distance because the glass is not perfectly transparent.

For example, in a two-centimeter-thick infinity mirror, with the light sources halfway between, light from the source initially travels one centimeter. The first reflection travels one centimeter to the rear mirror and then two centimeters to, and through the front mirror, a total of three centimeters. The second reflection travels two centimeters from front mirror to back mirror, and again two centimeters from the back mirror to, and through the front mirror, totaling four centimeters, plus the first reflection (three centimeters) making the second reflection seven centimeters away from the front mirror. Each successive reflection adds four more centimeters to the total (the third reflection appears 11 centimeters deep, fourth 15 centimeters, and so on). [1] [4]

Each additional reflection adds length to the path the light must travel before exiting the mirror and reaching the viewer. Often, reflection of the light also reduces the brightness of the image due to impurities in the glass. For example, most mirrors use glass with small amounts of iron oxide impurities, giving the reflection a slightly dim green tinge. Across multiple reflections, the brightness reduces further and further, and is tinted more and more green.

Cultural references

An early reference to an infinity mirror is found in the history of Chinese Buddhism, where the Huayan Patriarch Fazang is said to have illustrated the "tenfold" precedent of the Huayan Jing by placing ten mirrors around a statue of the Buddha—eight mirrors in an octagon, with additional mirrors on the floor and ceiling. When he lit a torch, its light and the illuminated Buddha were reflected within reflections around the room. [5]

Visual artists, especially contemporary sculptors, have made use of infinity mirrors. Yayoi Kusama, Josiah McElheny, Ivan Navarro, Taylor Davis, Anthony James, [6] and Guillaume Lachapelle [7] have all produced works that use the infinity mirror to expand the sensation of unlimited space in their artworks.

The contemporary classical composer Arvo Pärt wrote his 1978 composition Spiegel im Spiegel ("mirror in the mirror") as a musical reflection on the infinity mirror effect.

See also

Related Research Articles

<span class="mw-page-title-main">Kaleidoscope</span> Optical instrument to view patterns due to repeated reflection

A kaleidoscope is an optical instrument with two or more reflecting surfaces tilted to each other at an angle, so that one or more objects on one end of these mirrors are shown as a regular symmetrical pattern when viewed from the other end, due to repeated reflection. These reflectors are usually enclosed in a tube, often containing on one end a cell with loose, colored pieces of glass or other transparent materials to be reflected into the viewed pattern. Rotation of the cell causes motion of the materials, resulting in an ever-changing view being presented.

<span class="mw-page-title-main">Mirror</span> Object that reflects an image

A mirror, also known as a looking glass, is an object that reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the direction of the image in an equal yet opposite angle from which the light shines upon it. This allows the viewer to see themselves or objects behind them, or even objects that are at an angle from them but out of their field of view, such as around a corner. Natural mirrors have existed since prehistoric times, such as the surface of water, but people have been manufacturing mirrors out of a variety of materials for thousands of years, like stone, metals, and glass. In modern mirrors, metals like silver or aluminium are often used due to their high reflectivity, applied as a thin coating on glass because of its naturally smooth and very hard surface.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Refraction</span> Physical phenomenon relating to the direction of waves

In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.

<span class="mw-page-title-main">Retroreflector</span> Device to reflect radiation back to its source

A retroreflector is a device or surface that reflects radiation back to its source with minimum scattering. This works at a wide range of angle of incidence, unlike a planar mirror, which does this only if the mirror is exactly perpendicular to the wave front, having a zero angle of incidence. Being directed, the retroflector's reflection is brighter than that of a diffuse reflector. Corner reflectors and cat's eye reflectors are the most used kinds.

<span class="mw-page-title-main">Mirror image</span> Reflected duplication of an object

A mirror image is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off from substances such as a mirror or water. It is also a concept in geometry and can be used as a conceptualization process for 3-D structures.

<span class="mw-page-title-main">Collimated beam</span> Light all pointing in the same direction

A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction prevents the creation of any such beam.

<span class="mw-page-title-main">Prism (optics)</span> Transparent optical element with flat, polished surfaces that refract light

An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

<span class="mw-page-title-main">Reflection (physics)</span> "Bouncing back" of waves at an interface

Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected.

<span class="mw-page-title-main">Optical coating</span> Material which alters light reflection or transmission on optics

An optical coating is one or more thin layers of material deposited on an optical component such as a lens, prism or mirror, which alters the way in which the optic reflects and transmits light. These coatings have become a key technology in the field of optics. One type of optical coating is an anti-reflective coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and camera lenses. Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti-reflection over another range, allowing the production of dichroic thin-film filters.

<span class="mw-page-title-main">Specular reflection</span> Mirror-like wave reflection

Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface.

<span class="mw-page-title-main">Projection screen</span> Apparatus for displaying a projected image

A projection screen is an installation consisting of a surface and a support structure used for displaying a projected image for the view of an audience. Projection screens may be permanently installed on a wall, as in a movie theater, mounted to or placed in a ceiling using a rollable projection surface that retracts into a casing, painted on a wall, or portable with tripod or floor rising models as in a conference room or other non-dedicated viewing space. Another popular type of portable screens are inflatable screens for outdoor movie screening.

<span class="mw-page-title-main">Front projection effect</span> In-camera visual effects process

A front projection effect is an in-camera visual effects process in film production for combining foreground performance with pre-filmed background footage. In contrast to rear projection, which projects footage onto a screen from behind the performers, front projection projects the pre-filmed material over the performers and onto a highly reflective background surface.

<span class="mw-page-title-main">Curved mirror</span> Mirror with a curved reflecting surface

A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex or concave. Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices. The most common non-spherical type are parabolic reflectors, found in optical devices such as reflecting telescopes that need to image distant objects, since spherical mirror systems, like spherical lenses, suffer from spherical aberration. Distorting mirrors are used for entertainment. They have convex and concave regions that produce deliberately distorted images. They also provide highly magnified or highly diminished (smaller) images when the object is placed at certain distances.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">Reflection (computer graphics)</span> Simulation of reflective surfaces

Reflection in computer graphics is used to render reflective objects like mirrors and shiny surfaces.

<span class="mw-page-title-main">Glare (vision)</span> Bright light which impairs vision

Glare is difficulty of seeing in the presence of bright light such as direct or reflected sunlight or artificial light such as car headlamps at night. Because of this, some cars include mirrors with automatic anti-glare functions and in buildings, blinds or louvers are often used to protect occupants. Glare is caused by a significant ratio of luminance between the task and the glare source. Factors such as the angle between the task and the glare source and eye adaptation have significant impacts on the experience of glare.

<span class="mw-page-title-main">One-way mirror</span> Glass that allows people on one side to see those on the other but not vice versa

A One-way mirror, also called Two-way mirror, is a reciprocal mirror that appears reflective from one side and transparent from the other. The perception of one-way transmission is achieved when one side of the mirror is brightly lit and the other side is dark. This allows viewing from the darkened side but not vice versa.

<span class="mw-page-title-main">Plane mirror</span> Mirror with a flat reflecting surface

A plane mirror is a mirror with a flat (planar) reflective surface. For light rays striking a plane mirror, the angle of reflection equals the angle of incidence. The angle of the incidence is the angle between the incident ray and the surface normal. Therefore, the angle of reflection is the angle between the reflected ray and the normal and a collimated beam of light does not spread out after reflection from a plane mirror, except for diffraction effects.

<span class="mw-page-title-main">First-surface mirror</span>

A first-surface mirror or front-surface mirror is a mirror with the reflective surface being above a backing, as opposed to the conventional, second-surface mirror with the reflective surface behind a transparent substrate such as glass or acrylic.

References

  1. 1 2 3 Gbur, Gregory J. (July 30, 2011). "Infinity is weird… even in infinity mirrors!". Skulls in the Stars: The intersection of physics, optics, history and pulp fiction. Retrieved 2015-06-04.
  2. 1 2 Finio, Ben. "Arduino-controlled RGB LED Infinity Mirror". Instructables. Autodesk, Inc. Retrieved 2015-06-04.
  3. Grimes, William (December 1, 2013). "Lights, Mirrors, Instagram! #ArtSensation". The New York Times . Retrieved 2015-06-04.
  4. "Look Into Infinity". Exploratorium Snacks. Exploratorium. 19 March 2015. Retrieved 2015-06-04.
  5. Emmanuel, Steven M. (23 November 2015). A Companion to Buddhist Philosophy. John Wiley & Sons. p. 186. ISBN   978-1-119-14466-3.
  6. "Five Highlights from SOFA 2018". American Craft Council.
  7. Sufrin, Jon (2015-07-30). "The world of diorama artist Guillaume Lachapelle reels off into infinity". Canadian Broadcasting Corporation . Archived from the original on 2022-01-28.