Video feedback

Last updated
Video feedback Video feedback at last night's NYU IMPACT performance (by Ethan Hein).jpg
Video feedback

Video feedback is the process that starts and continues when a video camera is pointed at its own playback video monitor. The loop delay from camera to display back to camera is at least one video frame time, due to the input and output scanning processes; it can be more if there is more processing in the loop.

Contents

History

First discovered shortly after Charlie Ginsburg invented the first video recorder for Ampex in 1956, video feedback was considered a nuisance and unwanted noise.[ citation needed ] Technicians and studio camera operators were chastised for allowing a video camera to see its own monitor as the overload of self-amplified video signal caused significant problems with the 1950s video pickup, often ruining the pickup.[ citation needed ] It could also cause screen burn-in on television screens and monitors of the time as well, by generating static brightly illuminated display patterns.

In the 1960s early examples of video feedback art became introduced into the psychedelic art scene in New York City. Nam June Paik is often cited as the first video artist; he had clips of video feedback on display in New York City at the Greenwich Cafe in the mid 1960s.

Early video feedback works were produced by media artist experimenters on the East and West Coasts of North America in the late 1960s and early 1970s. Video feedback artists Steina and Woody Vasulka, with Richard Lowenberg and others, formed The Kitchen, which was located in the kitchen of a broken-down hotel in lower Manhattan; while Skip Sweeney and others founded Video Free America in San Francisco, to nurture their video art and feedback experiments.

Droste effect recursion in OBS, a computer streaming and recording program. OBS 26.1 Screenshot EN 2020.12.27 - 15.28.46.07.png
Droste effect recursion in OBS, a computer streaming and recording program.

David Sohn mentions video feedback in his 1970 book Film, the Creative Eye. This book was part of the base curriculum for Richard Lederer of St. Paul's School in Concord, New Hampshire, when he made video feedback part of an English curriculum in his 1970s course Creative Eye in Film. Several students in this class participated regularly in the making and recording of video feedback. Sony had released the VuMax series of recording video cameras and manually "hand-looped" video tape decks by this time which did two things: it increased the resolution of the video image, which improved picture quality, and it made video tape recording technology available to the general public for the first time and allowed for such video experimentation by anyone.

During the 1980s and into the 1990s video technology became enhanced and evolved into high quality, high definition video recording. Michael C. Andersen generated the first known mathematical formula of the video feedback process, [1] and he has also generated a Mendeleev's square to show the gradual progressive formulaic change of the video image as certain parameters are adjusted. [2]

In the 1990s the rave scene and a social return to art of a more psychedelic nature brought back displays of video feedback on large disco dance floor video screens around the world. There are filters for Adobe Photoshop and non-linear video editors that often have video feedback as the filter description, or as a setting on a filter. These filter types either mimic or directly utilize video feedback for its result effect and can be recognized by its vortex, phantasmagoric manipulation of the original recorded image.

In entertainment

Many artists have used optical feedback. A famous example is Queen's music video for "Bohemian Rhapsody" (1975). The effect (in this simple case) can be compared to looking at oneself between two mirrors.

Other videos that use variations of video feedback include:

"Howl-around" and Doctor Who title sequence

This technique—under the name "howl-around"—was employed for the opening titles sequence for the British science fiction series Doctor Who , [3] which employed this technique from 1963 to 1973.

Initially this was in black and white, and redone in 1967 to showcase the show's new 625-line broadcast resolution and feature the Doctor's face (Patrick Troughton at that time). It was redone again, in colour this time, in 1970. The next title sequence for the show, which debuted in 1973, abandoned this technique in favour of slit-scan photography.

In science

Optical feedback between mirrors. Optical feedback.jpg
Optical feedback between mirrors.

An example of optical feedback in science is the optical cavity found in almost every laser, which typically consists of two mirrors between which light is amplified. In the late 1990s it was found that so-called unstable-cavity lasers produce light beams whose cross-section present a fractal pattern. [4]

Optical feedback in science is often closely related to video feedback, so an understanding of video feedback can be useful for other applications of optical feedback. Video feedback has been used to explain the essence of fractal structure of unstable-cavity laser beams. [5]

Video feedback is also useful as an experimental-mathematics tool. Examples of its use include the making of Fractal patterns using multiple monitors, and multiple images produced using mirrors.

Optical feedback is also found in the image intensifier tube and its variants. Here the feedback is usually an undesirable phenomenon, where the light generated by the phosphor screen "feeds back" to the photocathode, causing the tube to oscillate, and ruining the image. This is typically suppressed by an aluminum reflective screen deposited on the back of the phosphor screen, or by incorporating a microchannel plate detector.

Optical feedback has been used experimentally in these tubes to amplify an image, in the manner of the cavity laser, but this technique has had limited use.

Optical feedback has also been experimented with as an electron source, since a photocathode-phosphor cell will 'latch' when triggered, providing a steady stream of electrons. See US Patent 4,531,122 for a typical application.

In philosophy

Douglas Hofstadter discusses video feedback in his book I Am a Strange Loop about the human mind and consciousness. He devotes a chapter to describing his experiments with video feedback.

At some point during the session, I accidentally stuck my hand momentarily in front of the camera's lens. Of course the screen went all dark, but when I removed my hand, the previous pattern did not just pop right back onto the screen, as expected. Instead I saw a different pattern on the screen, but this pattern, unlike anything I'd seen before, was not stationary. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Charge-coupled device</span> Device for the movement of electrical charge

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

<span class="mw-page-title-main">Laser construction</span>

A laser is constructed from three principal parts:

A strange loop is a cyclic structure that goes through several levels in a hierarchical system. It arises when, by moving only upwards or downwards through the system, one finds oneself back where one started. Strange loops may involve self-reference and paradox. The concept of a strange loop was proposed and extensively discussed by Douglas Hofstadter in Gödel, Escher, Bach, and is further elaborated in Hofstadter's book I Am a Strange Loop, published in 2007.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked".

An image intensifier or image intensifier tube is a vacuum tube device for increasing the intensity of available light in an optical system to allow use under low-light conditions, such as at night, to facilitate visual imaging of low-light processes, such as fluorescence of materials in X-rays or gamma rays, or for conversion of non-visible light sources, such as near-infrared or short wave infrared to visible. They operate by converting photons of light into electrons, amplifying the electrons, and then converting the amplified electrons back into photons for viewing. They are used in devices such as night-vision goggles.

<span class="mw-page-title-main">Optical cavity</span>

An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that forms a cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and providing feedback of the laser light. They are also used in optical parametric oscillators and some interferometers. Light confined in the cavity reflects multiple times, producing modes with certain resonance frequencies. Modes can be decomposed into longitudinal modes that differ only in frequency and transverse modes that have different intensity patterns across the cross-section of the beam. Many types of optical cavity produce standing wave modes.

<span class="mw-page-title-main">Streak camera</span>

A streak camera is an instrument for measuring the variation in a pulse of light's intensity with time. They are used to measure the pulse duration of some ultrafast laser systems and for applications such as time-resolved spectroscopy and LIDAR.

Particle image velocimetry (PIV) is an optical method of flow visualization used in education and research. It is used to obtain instantaneous velocity measurements and related properties in fluids. The fluid is seeded with tracer particles which, for sufficiently small particles, are assumed to faithfully follow the flow dynamics. The fluid with entrained particles is illuminated so that particles are visible. The motion of the seeding particles is used to calculate speed and direction of the flow being studied.

An output device is any piece of computer hardware that converts information into a human-perceptible form or, historically, into a physical machine-readable form for use with other non-computerized equipment. It can be text, graphics, tactile, audio, or video. Examples include monitors, printers, speakers, headphones, projectors, GPS devices, optical mark readers, and braille readers.

Feedback is what occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically photo detector have a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

<span class="mw-page-title-main">Monoscope</span> Video camera tube displaying a built-in still image, 1950s-1980s

A monoscope was a special form of video camera tube which displayed a single still video image. The image was built into the tube, hence the name. The tube resembled a small cathode ray tube (CRT). Monoscopes were used beginning in the 1950s to generate TV test patterns and station logos. This type of test card generation system was technologically obsolete by the 1980s.

Amplified spontaneous emission (ASE) or superluminescence is light, produced by spontaneous emission, that has been optically amplified by the process of stimulated emission in a gain medium. It is inherent in the field of random lasers.

Ultrafast laser spectroscopy is a spectroscopic technique that uses ultrashort pulse lasers for the study of dynamics on extremely short time scales. Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below.

The following are common definitions related to the machine vision field.

A distributed-feedback laser (DFB) is a type of laser diode, quantum-cascade laser or optical-fiber laser where the active region of the device contains a periodically structured element or diffraction grating. The structure builds a one-dimensional interference grating, and the grating provides optical feedback for the laser. This longitudinal diffraction grating has periodic changes in refractive index that cause reflection back into the cavity. The periodic change can be either in the real part of the refractive index or in the imaginary part. The strongest grating operates in the first order, where the periodicity is one-half wave, and the light is reflected backwards. DFB lasers tend to be much more stable than Fabry–Perot or DBR lasers and are used frequently when clean single-mode operation is needed, especially in high-speed fiber-optic telecommunications. Semiconductor DFB lasers in the lowest loss window of optical fibers at about 1.55 μm wavelength, amplified by erbium-doped fiber amplifiers (EDFAs), dominate the long-distance communication market, while DFB lasers in the lowest dispersion window at 1.3 μm are used at shorter distances.

Display motion blur, also called HDTV blur and LCD motion blur, refers to several visual artifacts that are frequently found on modern consumer high-definition television sets and flat panel displays for computers.

Range imaging is the name for a collection of techniques that are used to produce a 2D image showing the distance to points in a scene from a specific point, normally associated with some type of sensor device.

Photofluorography is photography of X-ray images from a fluorescent screen. It is commonly used in some countries for chest X-ray screening, e.g. to diagnose tuberculosis.

References

  1. "Formula for Videofeedback" Archived July 19, 2011, at the Wayback Machine . videofeedback.dk. Retrieved 2010-12-28.
  2. "Simulation of video feedback" Archived October 7, 2009, at the Wayback Machine . videofeedback.dk. Retrieved 2010-12-28.
  3. "Obituaries: Norman Taylor: Creator of the 'howl-around' visual in the original 'Dr Who' title sequence". independent.co.uk. 2011-03-10. Archived from the original on 2022-05-31. Retrieved 2022-01-21. Long before the days of hi-tech special effects, Norman Taylor accidentally created the swirling "howl-around" visual seen in the original, 1963 title sequence of Doctor Who – by pointing a camera at a monitor showing its own picture.
  4. Karman, G. P.; McDonald, G. S.; New, G. H. C.; Woerdman, J. P. (1999). "Fractal modes in unstable resonators". Nature. 402 (6758): 138. doi: 10.1038/45960 . S2CID   205046813.
  5. "Fractal video feedback" Archived May 20, 2011, at the Wayback Machine . Optics Group (University of Glasgow). Retrieved 2010-12-28.
  6. Hofstadter, Douglas (2007). I Am a Strange loop . New York: Basic Books. p.  67. ISBN   978-0-465-03079-8.