Intracerebroventricular injection

Last updated
Image showing the brain's ventricular system Blausen 0216 CerebrospinalSystem.png
Image showing the brain's ventricular system

Intracerebroventricular injection (often abbreviated as ICV injection) is a route of administration for drugs via injection into the cerebral ventricles so that it reaches the cerebrospinal fluid (CSF). This route of administration is often used to bypass the blood-brain barrier because it can prevent important medications from reaching the central nervous system. This injection method is widely used in diseased mice models to study the effect of drugs, plasmid DNA, and viral vectors on the central nervous system. In humans, ICV injection can be used for the administration of drugs for various reasons. Examples include the treatment of Spinal Muscular Atrophy (SMA), the administration of chemotherapy in gliomas, and the administration of drugs for long-term pain management. ICV injection is also used in the creation of diseased animal models specifically to model neurological disorders.

Contents

Uses

Creation of Animal Models

Intracerebroventricular injection has been used to inject drugs that induce a diseased state to create animal models for a variety of diseases. Of these, Alzheimer's disease (AD) animal models are heavily represented in the literature.

ICV injection of Streptozotocin has been used to create a metabolic model of Alzheimer's disease. This protocol works by damaging the control level of cerebral glucose metabolism to mimic Alzheimer's disease symptoms. An early sign of AD is glucose hypometabolism and impaired insulin signaling has been seen in AD patients. Streptozotocin has also largely been used to create diabetes animal models, by injecting either intravenously or intraperitoneally. [1] These ICV injections result in models for the sporadic Alzheimer's disease (sAD) form, rather than familial. A characteristic of sAD is an insulin-resistant brain state (IRBS). Streptozotocin is a beta-cytotoxic drug and by injecting it directly into the cerebral ventricles, the treated mice develop symptoms that align with sAD symptoms in humans. Some of these symptoms include IRBS-associated memory impairment, glucose hypometabolism, oxidative stress, and neurodegeneration. [2]

More recently, a model for AD that represents both familial and sporadic AD has emerged. In the clinic, as well as independent experiments, an increase in amyloid beta (Aβ) levels in the brain has been seen to cause Alzheimer-like symptoms. To create an animal model of AD, Aβ can be injected using ICV injection. A benefit of this pathogen-induced model is that it shows Alzheimer's-like symptoms, while also exhibiting Aβ pathology. This is present in both familial and sporadic AD, making it a more inclusive model. Additionally, the level of Aβ can be controlled, making it an ideal candidate for AD investigation. However, damage to the brain tissue during ICV injection must be minimized to prevent neuronal injury. This requires a highly trained individual or surgeon. [3]

Testing in Animals

Intracerebroventricular injection has also been used to test therapeutics and other drugs in animals. Examples of these studies include injection of bromodeoxyuridine for proliferation tracing, Apelin-13 for cerebral ischemia, and α-interferon for its antiviral and antibiotic properties.

ICV injection of bromodeoxyuridine (BrdU) has been used to determine the effectiveness of this injection method compared to intraperitoneal administration. BrdU is a widely used marker to detect proliferative cells in the brain. It is assumed that the number of labeled nuclei after BrdU administration is an indicator of the intensity of cell proliferation. In the study, there was an increase in BrdU-positive nuclei in the parenchyma for ICV injection compared to the levels for intraperitoneal administration. This indicates a greater level of the tracer is introduced when injected directly into the ventricular cerebrospinal fluid. [4]

Cerebral ischemia/reperfusion (I/R) injury is the main pathophysiological process present in ischemic stroke. Apelin regulates many physiological functions including cardiovascular function, endocrine function, nervous system function, and feeding behavior. This regulation occurs through combination with the APJ receptor, and this system is present in many brain regions. [5] In previous studies, lateral ICV injection of Apelin-13 was done to observe apoptosis during cerebral I/R injury. This route of administration allows for the necessary level of Apelin-13 to reach the brain regions that are impacted by ischemia and hypoxia.

ICV injection of α-Interferon has been used for the treatment of intracranial malignancies in the clinic. α-Interferon has antiviral, antibacterial, and immunostimulatory properties. However, severe central nervous system symptoms occur after injection for ICV, intravenous, and intramuscular routes of administration. Additionally, only .09-.18% of the total Interferon dose was seen to pass through the blood-brain barrier when injected intramuscularly. In one study, intraperitoneal injection of α-Interferon was done on mice and there was no impact on monoamine levels. Another study conducted a similar experiment using the ICV injection method. This study showed reduced monoamine levels in the frontal cortex, in a dose-dependent manner. [6] This indicates that ICV injection increases the percentage of the dose that reaches the mouse brain.

Human Therapeutics

In recent years, gene and cell therapy therapeutic options have become increasingly present in the clinic. For some of these therapeutics, the administration of the drug directly into the central nervous system is optimal for the treatment of neurological disorders, while avoiding a severe immune response. Additionally, most of the dose is introduced directly into the target area with ICV injection. [7] In addition to these therapies, ICV injection has been used for the delivery of chemotherapies, treatment of carcinomatous meningitis, and other neurological disorders.

In the design of gene therapies, the proper adeno-associated virus (AAV) serotype must be selected. AAV is effective at transporting genetic material in vivo, and there are more than 100 serotypes for AAV that have been identified. Each serotype has a different binding capacity to cell surface receptors. Three serotypes have been identified for their promising specificity to the central nervous system. In a 2017 study, AAV2/1, AAVDJ8, and AAV9 were administered to neonatal mice via ICV injection. The brains of these mice were analyzed for GFP expression following this procedure. The results of this showed that AAV2/1 had higher expression in the cortical layers while penetrating less to the midbrain compared to the AAVDJ8 and AAV9 serotypes. The results indicate that ICV injection of AAV vectors is successful for having a lasting expression of the transgene. [8]

Primary malignant brain tumors (PMBT) and brain metastases have a high impact on patients with both high morbidity and mortality rates. For patients impacted by this, treatment consists primarily of palliative care. However, multimodal therapy using intra-CSF chemotherapy has shown promise in overt leukemic or lymphomatous meningeosis and primary CNS lymphomas. This form of chemotherapy is less toxic while maintaining similar efficacy to cranial irradiation, by preventing the infiltration and proliferation of leukemic and tumor cells into the leptomeninges. [9]

In a 2019 study, autologous non-genetically modified adipose-derived stromal vascular fraction (ADSVF) was injected into 24 patients using an ICV injection procedure. Seven other patients were injected through ventriculoperitoneal shunts. These seven patients were being treated for varying neurodegenerative disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), progressive multiple sclerosis (MS-P), Parkinson's, spinal cord injury, traumatic brain injury, and stroke. A total of 113 injections were performed on the 31 patients, with one patient having up to 15 injections over three years. Follow-up was conducted for each participant, with varying follow-up times. One patient developed an infection from their implant, and four patients required hospitalization after their injections. Overall, the results indicate that ICV injections, both single and repeat, are safe. [10]

Pain Management

Intracerebroventricular injection has also been historically used for pain management. These procedures are primarily focused on refractory head and facial pain, peripheral nerve injury, and other persistent pain conditions.

Six patients with either refractory trigeminal neuralgia or cluster headaches were treated with an ICV opiate infusion pump. Visual analog scores (VAS) were obtained before and after injection to measure effectiveness. When compared, VAS scores improved from an average of 7.8 to 2.8 after the procedure. Most complications that occurred from this procedure consisted of nausea and drowsiness. These symptoms went away after the pump was adjusted. ICV pumps are typically kept in and replaced every four to five years, making the procedure ideal for patients with chronic pain. [11]

The CTK 01512-2 peptide toxin can act as a voltage-gated calcium channel (VGCC) blocker. In previous studies, it was shown to have a prolonged effect on preventing and reducing the processing of harmful stimuli by the central nervous system and peripheral nervous system. To strengthen this finding, the CTK 01512-2 toxin was tested on two models of persistent pain. These models include chronic post-ischemia pain (CPIP) and paclitaxel-induced peripheral neuropathy. Additionally, the peptide was injected using three routes of administration: intravenous, intrathecal, and intracerebroventricular. This approach is beneficial for patients who do not respond to traditional pain management approaches. This also addresses the side effects that occur when using opioid agents. The results of this study showed that pain-reducing effects were observed with all three methods of administration. [11]

The drugs gabapentin and pregabalin have long since been used for the treatment of neuropathic pain conditions. The mechanism behind the effectiveness of these drugs is not fully known. However, gabapentin and pregabalin were demonstrated to have supraspinal-mediated analgesic effects after peripheral nerve injury. This is due to the noradrenergic pain inhibitory system that is employed by these drugs, coupled with spinal receptors that produce analgesic effects. The results of this study indicate that ICV injection of these drugs decreases thermal and mechanical hypersensitivity in a murine chronic pain model that has partial ligation of the sciatic nerve. [12]

Complications

Image showing intracerebroventricular injection using Ommaya Reservoir Ommaya 01.png
Image showing intracerebroventricular injection using Ommaya Reservoir

Many factors must be considered with intracerebroventricular injection to maintain safety. Some of these factors include osmolarity, pH, volume, and the presence of preservatives in the drug solution. Also, intracranial pressure, cerebrospinal fluid bulk flow rate, and buffering capacity have an impact on the distribution and safety of the injected drug. A major concern of ICV injection is neurovascular injury and intracranial hemorrhage. The risk of these conditions increases with each additional injection or "tap". For this reason, if repeated taps are needed, a catheter-based device can be implanted. These devices are connected to a subcutaneous reservoir, the most common being the Ommaya reservoir. This can be accessed multiple times, with a sterile puncture through the scalp into the reservoir. There is also an associated risk of infection with this method, but it is less likely than other methods of accessing the intraventricular space. Other rare complications with this method include leukoencephalopathy, white matter necrosis, and intracerebral hemorrhage. [13]

Other complications can occur with this procedure, and they can be divided into infectious and noninfectious categories. Of the noninfectious complications, the most frequently reported were CSF leaks, hemorrhage, catheter malposition, catheter obstruction, and device malfunction. In one study, the most likely cause for device removals was due to infectious complications (73.75 percent). Of the infections, the most common cause was skin flora. The aseptic technique during insertion and handling has been shown to decrease the occurrence of these complications. Also, in some cases of infection, antibiotics could be given through the ICV system, avoiding the need for removal. [14]

Administration Technique

Anatomy

The blood-brain barrier protects the brain by restricting the ability of large molecules to cross the barrier between the blood, CSF, and interstitial fluid of the brain. ICV injection circumvents this barrier, to be able to deliver drugs to the CSF. An ICV device is implanted under the scalp, into the subgaleal space where it is then connected to the ventricles with an outlet catheter. This allows for repeated doses of the drug without having to re-puncture the scalp. [14]

Production of CSF is at a rate of about .3 mL/minute and occurs at the ependymal and parenchymal regions and the choroid plexus. Up to 80 percent of CSF production comes from the choroid plexus, which is present within the lateral, third, and fourth ventricles. The choroid is lined with epithelium with tight junctions at the ventricular side of the cells. This comprises the blood-CSF barrier. Whereas the blood-brain barrier is made up of vascular endothelium in capillary beds throughout the CNS parenchyma. [13]

Insertion

For insertion in mice, a permanent ICV guide cannula must be inserted 1 mm above the lateral ventricle. A trained surgeon is ideal for insertion, and a stereotaxic frame and bone cement are needed. The cannula is implanted through the hindlimb area of the cerebral cortex. The surgeon must be careful to minimize damage to the surrounding brain tissue during this process. [7]

A catheter connected to a subcutaneous reservoir is implanted for permanent access in humans. The reservoir used is most commonly the Ommaya reservoir. A 25-gauge needle is used to puncture the scalp into the reservoir. A few milliliters of CSF are withdrawn before injecting the drug. This technique is typically used for long-term drug administration. Rarely will repeated taps be conducted to administer drugs due to the risk of damaging brain tissue. [13]

Related Research Articles

<span class="mw-page-title-main">Route of administration</span> Path by which a drug, fluid, poison, or other substance is taken into the body

In pharmacology and toxicology, a route of administration is the way by which a drug, fluid, poison, or other substance is taken into the body.

<span class="mw-page-title-main">Cholinergic</span> Agent which mimics choline

Cholinergic agents are compounds which mimic the action of acetylcholine and/or butyrylcholine. In general, the word "choline" describes the various quaternary ammonium salts containing the N,N,N-trimethylethanolammonium cation. Found in most animal tissues, choline is a primary component of the neurotransmitter acetylcholine and functions with inositol as a basic constituent of lecithin. Choline also prevents fat deposits in the liver and facilitates the movement of fats into cells.

<span class="mw-page-title-main">Interferon beta-1a</span> Cytokine in the interferon family

Interferon beta-1a is a cytokine in the interferon family used to treat multiple sclerosis (MS). It is produced by mammalian cells, while interferon beta-1b is produced in modified E. coli. Some research indicates that interferon injections may result in an 18–38% reduction in the rate of MS relapses.

<span class="mw-page-title-main">Niemann–Pick disease</span> Medical condition

Niemann–Pick disease (NP), also known as acid sphingomyelinase deficiency, is a group of rare genetic diseases of varying severity. These are inherited metabolic disorders in which sphingomyelin accumulates in lysosomes in cells of many organs. NP types A, A/B, and B are cause by mutations in the SMPD1 gene, which causes a deficiency of a acid sphingomyelinase (ASM). NP type C is now considered a separate disease, as SMPD1 is not involved, and there is no deficiency in ASM.

Interferon beta-1b is a cytokine in the interferon family used to treat the relapsing-remitting and secondary-progressive forms of multiple sclerosis (MS). It is approved for use after the first MS event. Closely related is interferon beta 1a, also indicated for MS, with a very similar drug profile.

<span class="mw-page-title-main">Neurosyphilis</span> Infection of the central nervous system in a patient with syphilis

Neurosyphilis is the infection of the central nervous system in a patient with syphilis. In the era of modern antibiotics, the majority of neurosyphilis cases have been reported in HIV-infected patients. Meningitis is the most common neurological presentation in early syphilis. Tertiary syphilis symptoms are exclusively neurosyphilis, though neurosyphilis may occur at any stage of infection.

<span class="mw-page-title-main">Streptozotocin</span> Chemical compound

Streptozotocin or streptozocin (STZ) is a naturally occurring alkylating antineoplastic agent that is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. It is used in medicine for treating certain cancers of the islets of Langerhans and used in medical research to produce an animal model for hyperglycemia and Alzheimer's in a large dose, as well as type 2 diabetes or type 1 diabetes with multiple low doses.

Dercum's disease is a rare condition characterized by multiple painful fatty tumors, called lipomas, that can grow anywhere in subcutaneous fat from scalp to plantar surface of the foot. Sometimes referred as adiposis dolorosa in medical literature, Dercum’s disease is more of a syndrome than a disease. While the term adiposis dolorosa may be correct, the term Dercum's disease is more often used, along with the acronym DD.

Bapineuzumab is a humanized monoclonal antibody that acts on the nervous system and may have potential therapeutic value for the treatment of Alzheimer's disease and possibly glaucoma. However, in 2012 it failed to produce significant cognitive improvements in patients in two major trials, despite lowering key biomarkers of AD, amyloid brain plaque and hyperphosphorylated tau protein in CSF.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.

<span class="mw-page-title-main">Intraperitoneal injection</span> Injection of substances into peritoneum (body cavity)

Intraperitoneal injection or IP injection is the injection of a substance into the peritoneum. It is more often applied to non-human animals than to humans. In general, it is preferred when large amounts of blood replacement fluids are needed or when low blood pressure or other problems prevent the use of a suitable blood vessel for intravenous injection.

<span class="mw-page-title-main">Quinolinic acid</span> Dicarboxylic acid with pyridine backbone

Quinolinic acid, also known as pyridine-2,3-dicarboxylic acid, is a dicarboxylic acid with a pyridine backbone. It is a colorless solid. It is the biosynthetic precursor to niacin.

Traumatic brain injury can cause a variety of complications, health effects that are not TBI themselves but that result from it. The risk of complications increases with the severity of the trauma; however even mild traumatic brain injury can result in disabilities that interfere with social interactions, employment, and everyday living. TBI can cause a variety of problems including physical, cognitive, emotional, and behavioral complications.

Behçet's disease is recognized as a disease that cause inflammatory perivasculitis, inflammation of the tissue around a blood or lymph vessel, in practically any tissue in the body. Usually, prevalent symptoms include canker sores or ulcers in the mouth and on the genitals, and inflammation in parts of the eye. In addition, patients experience severe headache and papulopustular skin lesions as well. The disease was first described in 1937 by a Turkish dermatologist, Dr. Hulusi Behçet. Behçet's disease is most prevalent in the Middle East and the Far East regions; however, it is rare in America regions.

Retinal gene therapy holds a promise in treating different forms of non-inherited and inherited blindness.

Florbetaben, a fluorine-18 (18F)-labeled stilbene derivative, trade name NeuraCeq, is a diagnostic radiotracer developed for routine clinical application to visualize β-amyloid plaques in the brain. It is indicated for Positron Emission Tomography (PET) imaging of β-amyloid neuritic plaque density in the brains of adult patients with cognitive impairment who are being evaluated for Alzheimer's disease (AD) and other causes of cognitive impairment. β-amyloid is a key neuropathological hallmark of AD, so markers of β-amyloid plaque accumulation in the brain are useful in distinguishing AD from other causes of dementia. The tracer successfully completed a global multicenter phase 0–III development program and obtained approval in Europe, US and South Korea in 2014.

<span class="mw-page-title-main">Phenserine</span> Chemical compound

Phenserine is a synthetic drug which has been investigated as a medication to treat Alzheimer's disease (AD), as the drug exhibits neuroprotective and neurotrophic effects.

Donanemab is a biological drug in Phase III clinical trials to determine whether it slows the progression of early Alzheimer's disease. Donanemab has shown positive results in its first trials. Donanemab was developed by the Eli Lilly and Co. and is under clinical development as a possible treatment for Alzheimer's disease. There is currently no approved cure or disease-modifying treatment for Alzheimer's disease except for lecanemab.

<span class="mw-page-title-main">Spongy degeneration of the central nervous system</span> Neurodegenerative disorder

Spongy degeneration of the central nervous system, also known as Canavan's disease, Van Bogaert-Bertrand type or Aspartoacylase (AspA) deficiency, is a rare autosomal recessive neurodegenerative disorder. It belongs to a group of genetic disorders known as leukodystrophies, where the growth and maintenance of myelin sheath in the central nervous system (CNS) are impaired. There are three types of spongy degeneration: infantile, congenital and juvenile, with juvenile being the most severe type. Common symptoms in infants include lack of motor skills, weak muscle tone, and macrocephaly. It may also be accompanied by difficulties in feeding and swallowing, seizures and sleep disturbances. Affected children typically die before the age of 10, but life expectancy can vary.

<span class="mw-page-title-main">Experimental models of Alzheimer's disease</span>

Experimental models of Alzheimer's disease are organism or cellular models used in research to investigate biological questions about Alzheimer's disease as well as develop and test novel therapeutic treatments. Alzheimer's disease is a progressive neurodegenerative disorder associated with aging, which occurs both sporadically or due to familial passed mutations in genes associated with Alzheimer's pathology. Common symptoms associated with Alzheimer's disease include: memory loss, confusion, and mood changes.

References

  1. Grieb, Paweł (April 2016). "Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer's Disease: in Search of a Relevant Mechanism". Molecular Neurobiology. 53 (3): 1741–1752. doi:10.1007/s12035-015-9132-3. PMC   4789228 . PMID   25744568.
  2. Salkovic-Petrisic, Melita; Knezovic, Ana; Hoyer, Siegfried; Riederer, Peter (1 January 2013). "What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer's disease, about the therapeutic strategies in Alzheimer's research". Journal of Neural Transmission. 120 (1): 233–252. doi:10.1007/s00702-012-0877-9. ISSN   1435-1463. PMID   22886150. S2CID   17847561.
  3. Kim, Hye Yun; Lee, Dongkeun K.; Chung, Bo-Ryehn; Kim, Hyunjin V.; Kim, YoungSoo (16 March 2016). "Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits". Journal of Visualized Experiments (109): 53308. doi:10.3791/53308. ISSN   1940-087X. PMC   4829024 . PMID   27023127.
  4. Cifuentes, M.; Pérez-Martín, M.; Grondona, J. M.; López-Ávalos, M. D.; Inagaki, N.; Granados-Durán, P.; Rivera, P.; Fernández-Llebrez, P. (15 October 2011). "A comparative analysis of intraperitoneal versus intracerebroventricular administration of bromodeoxyuridine for the study of cell proliferation in the adult rat brain". Journal of Neuroscience Methods. 201 (2): 307–314. doi:10.1016/j.jneumeth.2011.08.006. ISSN   1872-678X. PMID   21864575. S2CID   7087572.
  5. Yan, Xiao-ge; Cheng, Bao-hua; Wang, Xin; Ding, Liang-cai; Liu, Hai-qing; Chen, Jing; Bai, Bo (2015). "Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury". Neural Regeneration Research. 10 (5): 766–771. doi: 10.4103/1673-5374.157243 . PMC   4468768 . PMID   26109951.
  6. Kamata, M (March 2000). "Effect of single intracerebroventricular injection of α-interferon on monoamine concentrations in the rat brain". European Neuropsychopharmacology. 10 (2): 129–132. doi:10.1016/s0924-977x(99)00067-x. PMID   10706995. S2CID   33877290.
  7. 1 2 Kuo, Andy; Smith, Maree T. (August 2014). "Theoretical and practical applications of the intracerebroventricular route for CSF sampling and drug administration in CNS drug discovery research: A mini review". Journal of Neuroscience Methods. 233: 166–171. doi:10.1016/j.jneumeth.2014.06.006. PMID   24937765. S2CID   40631363.
  8. Hammond, Sean L.; Leek, Ashley N.; Richman, Evan H.; Tjalkens, Ronald B. (2017). "Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection". PLOS ONE. 12 (12): e0188830. Bibcode:2017PLoSO..1288830H. doi: 10.1371/journal.pone.0188830 . ISSN   1932-6203. PMC   5731760 . PMID   29244806.
  9. Fleischhack, Gudrun; Jaehde, Ulrich; Bode, Udo (1 January 2005). "Pharmacokinetics Following Intraventricular Administration of Chemotherapy in Patients with Neoplastic Meningitis". Clinical Pharmacokinetics. 44 (1): 1–31. doi:10.2165/00003088-200544010-00001. ISSN   1179-1926. PMID   15634030. S2CID   10501315.
  10. Duma, Christopher; Kopyov, Oleg; Kopyov, Alex; Berman, Mark; Lander, Elliot; Elam, Michael; Arata, Michael; Weiland, David; Cannell, Ruslana; Caraway, Chad; Berman, Sean; Scord, Kristin; Stemler, Lian; Chung, Karlyssa; Khoudari, Samuel; McRory, Rory; Duma, Chace; Farmer, Sawyer; Bravo, Anthony; Yassa, Christian; Sanathara, Ami; Singh, Elisa; Rapaport, Benjamin (October 2019). "Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients". Molecular Biology Reports. 46 (5): 5257–5272. doi: 10.1007/s11033-019-04983-5 . ISSN   1573-4978. PMID   31327120. S2CID   198136701.
  11. 1 2 Lee, Darrin J (2014). "Intracerebroventricular opiate infusion for refractory head and facial pain". World Journal of Clinical Cases. 2 (8): 351–356. doi: 10.12998/wjcc.v2.i8.351 . PMC   4133425 . PMID   25133146.
  12. Tanabe, Mitsuo; Takasu, Keiko; Takeuchi, Yuichi; Ono, Hideki (15 November 2008). "Pain relief by gabapentin and pregabalin via supraspinal mechanisms after peripheral nerve injury". Journal of Neuroscience Research. 86 (15): 3258–3264. doi:10.1002/jnr.21786. PMID   18655202. S2CID   20925101.
  13. 1 2 3 Cook, Aaron M; Mieure, Katherine D; Owen, Robert D; Pesaturo, Adam B; Hatton, Jimmi (July 2009). "Intracerebroventricular Administration of Drugs". Pharmacotherapy. 29 (7): 832–845. doi:10.1592/phco.29.7.832. PMID   19558257. S2CID   25436128.
  14. 1 2 Cohen-Pfeffer, Jessica L.; Gururangan, Sridharan; Lester, Thomas; Lim, Daniel A.; Shaywitz, Adam J.; Westphal, Manfred; Slavc, Irene (1 February 2017). "Intracerebroventricular Delivery as a Safe, Long-Term Route of Drug Administration". Pediatric Neurology. 67: 23–35. doi: 10.1016/j.pediatrneurol.2016.10.022 . ISSN   0887-8994. PMID   28089765.