The aim of an accurate intraocular lens power calculation is to provide an intraocular lens (IOL) that fits the specific needs and desires of the individual patient. The development of better instrumentation for measuring the eye's axial length (AL) and the use of more precise mathematical formulas to perform the appropriate calculations have significantly improved the accuracy with which the surgeon determines the IOL power.
In order to determine the power of intraocular lens, several values need to be known:
Of these parameters, the first two are measured before the implantation, the third parameter, the ELP, need to be estimated mathematically before the implantation and the last parameter is provided by the manufacturer of the intraocular lens.
The axial length (AL) is the distance between the anterior surface of the cornea and the fovea and usually measured by A-scan ultrasonography or optical coherence biometry. The AL is the most important factor in IOL calculation: A 1-mm error in AL measurement results in a refractive error of approximately 2.88 D or about 3.0-3.5 D error of IOL power in an average eye. A mean shortening of 0.25–0.33mm can translate into an error of IOL power by approximately 1 D [1]
In A-scan ultrasound biometry, a crystal oscillates to generate a high-frequency sound wave that penetrates into the eye. When the sound wave encounters a media interface, part of the sound wave is reflected back toward the probe. These echoes allow us to calculate the distance between the probe and various structures in the eye. Ultrasonography does not measure the distance but rather the time required for a sound pulse to travel from the cornea to the retina. The speed of sound varies in different parts of the eye. The eye is divided ultrasonographically into four components:Cornea, Anterior chamber, Lens thickness and Vitreous cavity. The velocity of sound in these compartments are 1620, 1532, 1641, 1532 m/s respectively. [2] Through normal eyes an average velocity of 1555 m/s is accepted for calculation. Modern instruments use separate sound velocities for the different eye components to obtain the total axial length. The measured transit time is converted to a distance using the formula d=t/v Where d is the distance, t is the time and v is the velocity. [1]
Two types of A-scan ultrasound biometry are currently in use. The first is contact applanation biometry. This technique requires placing an ultrasound probe on the central cornea. While this is a convenient way to determine the axial length for most normal eyes, errors in measurement almost invariably result from the probe indenting the cornea and shallowing the anterior chamber. Since the compression error is variable, it cannot be compensated for by a constant. IOL power calculations using these measurements will lead to an overestimation of the IOL power. In shorter eyes, this effect is amplified. The second type is immersion A-scan biometry, which requires placing a saline filled scleral shell between the probe and the eye. Since the probe does not exert direct pressure on the cornea, compression of the anterior chamber is avoided. A mean shortening of 0.25–0.33mm has been reported between applanation and immersion axial length measurements, which can translate into an error of IOL power by approximately 1 D. In general, immersion biometry has been shown to be more accurate than contact applanation biometry in several studies. The main limitation with the A-scan ultrasound is the poor image resolution due to the use of a relatively long, low-resolution wavelength (10 MHz) to measure a relatively short distance. In addition, variations in retinal thickness surrounding the fovea contribute to inconsistency in the final measurement. [3]
The technique of partial coherence interferometry measures the time required for infrared light to travel to the retina. Because light travels at too high a speed to be measured directly, light interference methodology is used to determine the transit time and thus the AL. This technique does not require contact with the globe, so corneal compression artifacts are eliminated. Compared with ultrasonography, the partial coherence interferometry provides more accurate, reproducible AL measurement. However, it is difficult to obtain a measurement in the presence of a dense cataract or other media opacities, which limits the use of this technique.
Another advantage of PCI over ultrasound biometry is that the axial length measurement is performed through the visual axis since the patient is asked to fixate into the laser spot. In highly myopic or staphylomatous eyes, this can be particularly advantageous since it can sometimes be difficult to measure the true axial length through the visual axis with an ultrasound probe. PCI is also superior to ultrasound in the measurement of pseudophakic and silicone oil-filled eyes. For optical biometry, it is not as critical how the media change because the correction factor that must be applied is much smaller than in ultrasound biometry. [3] The axial length obtained from PCI may be slightly longer than that obtained from ultrasound. This is due to PCI measuring the distance from the corneal surface to the RPE while ultrasound measures to the anterior retinal surface. Therefore, many IOL measurement machines require refined IOL constants unique to their mechanism.
For ultrasonography AL corresponds to the anterior retinal surface, whereas for optical biometry it corresponds to the retinal pigment epithelium (RPE)/Bruch's membrane (AL-RPE). AL can also be defined as the linear distance between the corneal surface and the inner limiting membrane (ILM) or AL-ILM. Since IOL Power Calculation formulas were developed earlier using ultrasound, the AL-ILM, each AL-RPE optical biometric measurement is converted to an AL-ILM by subtracting the retinal thickness, which is assumed to be 300 μm in all eyes. [4]
The central corneal power is the second important factor in the calculation formula. To simplify the calculation, the cornea is assumed to be a thin spherical lens with a fixed anterior to posterior corneal curvature ratio and an index of refraction of 1.3375. Central corneal power can be measured by keratometry or corneal topography. Corneal radius of curvature relates to corneal power with the equation: r = 337.5/K. [3]
Intraocular lens power calculation formulas fall into two major categories: regression formulas and theoretical formulas. Regression formulas are now obsolete and modern theoretic formulas are used instead. [5] The regression formulas are empiric formulas generated by averaging large numbers of postoperative clinical results (i.e. from retrospective computer analysis of data obtained from a great many patients who have undergone surgery). The most common regression formulas are the SRK and SRK II. In the 1980s SRK and SRK II were popular because they were simple to use. However, power error often resulted from the use of these formulas.
The SRK formula is calculated easily by hand as , where is the IOL power to be used for emmetropia, is the IOL specific A constant, is the average corneal refractive power (diopters), and is the length of the eye (mm). The SRK II formula adjusts the A constant utilized depending on the axial length: increasing the A constant for short eyes and decreasing the A constant for long eyes.
Theoretical formulas are based on geometrical optics. The eye is considered a two lens system (i.e. IOL and cornea) and the predicted distance between them which is called the estimated lens position (ELP) is used to calculate the power of the IOL. All formulas require an estimation of the position that the IOL will sit in the eye, a factor known as the ELP, which is defined as the distance between the cornea and the IOL. ELP correlates with the placement of the IOL inside the eye, whether it is in the anterior chamber in the sulcus or in the capsular bag. It also varies with the implant's configuration and the location of its optical center. For example, the use of a meniscus lens calls for a smaller ELP value than a biconvex IOL.
IOL calculation formulas differ in the way they calculate ELP. In the original theoretical formula the ELP is considered a constant value of 4 mm for every lens in every patient. [5] Better results are obtained by relating the expected ELP to the axial length and corneal curvature. Modern theoretical formulas predict ELP differently based on axial length and corneal power: ELP decreases in the shorter eyes and flat corneas and increases in the longer eyes and steeper corneas. The improvements in IOL power calculation are the result of improvements in the predictability of the ELP. [2]
The best known modern formulas are SRK-T, Holladay 1, Holladay 2, Hoffer-Q and Haigis. These formulas are programmed into the IOLMaster, Lenstar and most modern ultrasonographic instruments, thus eliminating any need for regression formulas. [1]
The A-constant was originally designed for the SRK equation and depends on multiple variables including IOL manufacturer, refraction index, style and placement within the eye. Because of its simplicity, the A-constant became the value used to characterize intraocular implants.
A-constants are used directly in SRK II and SRK/T formulas. The constant is a theoretical value that relates the lens power to AL and keratometry, it is not expressed in units and is specific to the design of the IOL and its intended location and orientation within the eye.
Using A-constants is practical when a decision on the implant power has to be made during surgery because the power of the lens varies in a 1:1 relationship with the A-constants: if A decreases by 1 diopter, IOL power decreases by 1 diopter also. This straight relationship adds to the simplicity and popularity of the A-constant. Other constants used in modern IOL formulas include the ACD value in Binkhorst and Hoffer-Q formulas, the a0, a1, and a2 constants of the Haigis formula, and the Surgeon factor (SF) in Holladay formulas. True anterior chamber depth (ACD) is measured between the posterior corneal surface and the anterior lens surface. This measure is not to be confused with the anterior chamber constant (ACD constant) used in IOL power calculation formulas. [2]
All lens constants are estimates, to begin with. To obtain the best possible results, it is imperative that these constants be optimized. Optimization is a process that is user-specific and incorporates the various systematic errors attributable to measurement of ocular parameters. In order to optimize a lens-constant, the user must back calculate the formula so that the actual post-operative refractive error is included. This means that one must calculate the constant so that a recalculation of the formula would predict exactly the same refractive error as actually observed.
Cataract extraction following refractive surgery poses special problems for the patient and the surgeon because the corneal change as a result of refractive surgery complicates accurate keratometry, a key element of lens implant power calculation. After laser refractive surgery for myopia, this could result in overestimation of corneal power, underestimation of the IOL power required, and hyperopic outcomes after cataract surgery.
The difficulty arises from several factors: [1]
Auditing of results helps to compare formulae and optimisation strategies amongst each other. Due to considerable confusion in the past, a clear set of guidelines now exists to report IOL power related data. There are six key measures that are to be reported. In recognition of the fact that comparison of ideal IOL powers is likely to be error-prone, all comparisons are done for actual or predicted refractive errors.
1. Mean Error (ME) and standard deviation (SD) in prediction.
2. Mean Absolute Error (MAE) and standard deviation (SD) in prediction.
3. The percentage of eyes ± 0.5 D from the predicted target refraction.
4. The percentage of eyes ± 1.0 D from the predicted target refraction.
5. The percentage of eyes > 2.0 D from the predicted target refraction.
6. Range of errors from maximum plus error to maximum minus error.
Software tools can be used in order to perform an audit.
Near-sightedness, also known as myopia and short-sightedness, is an eye disease where light focuses in front of, instead of on, the retina. As a result, distant objects appear blurry while close objects appear normal. Other symptoms may include headaches and eye strain. Severe near-sightedness is associated with an increased risk of retinal detachment, cataracts, and glaucoma.
Far-sightedness, also known as long-sightedness, hypermetropia, and hyperopia, is a condition of the eye where distant objects are seen clearly but near objects appear blurred. This blur is due to incoming light being focused behind, instead of on, the retina due to insufficient accommodation by the lens. Minor hypermetropia in young patients is usually corrected by their accommodation, without any defects in vision. But, due to this accommodative effort for distant vision, people may complain of eye strain during prolonged reading. If the hypermetropia is high, there will be defective vision for both distance and near. People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus. Newborns are almost invariably hypermetropic, but it gradually decreases as the newborn gets older.
Radial keratotomy (RK) is a refractive surgical procedure to correct myopia (nearsightedness). It was developed in 1974 by Svyatoslav Fyodorov, a Russian ophthalmologist. It has been largely supplanted by newer, more accurate operations, such as photorefractive keratectomy, LASIK, Epi-LASIK and the phakic intraocular lens.
Refractive eye surgery is optional eye surgery used to improve the refractive state of the eye and decrease or eliminate dependency on glasses or contact lenses. This can include various methods of surgical remodeling of the cornea (keratomileusis), lens implantation or lens replacement. The most common methods today use excimer lasers to reshape the curvature of the cornea. Refractive eye surgeries are used to treat common vision disorders such as myopia, hyperopia, presbyopia and astigmatism.
Phacoemulsification is a cataract surgery method in which the internal lens of the eye which has developed a cataract is emulsified with the tip of an ultrasonic handpiece and aspirated from the eye. Aspirated fluids are replaced with irrigation of balanced salt solution to maintain the volume of the anterior chamber during the procedure. This procedure minimises the incision size and reduces the recovery time and risk of surgery induced astigmatism.
An Intraocular lens (IOL) is a lens implanted in the eye usually as part of a treatment for cataracts or for correcting other vision problems such as short sightedness and long sightedness, a form of refractive surgery. If the natural lens is left in the eye, the IOL is known as phakic, otherwise it is a pseudophakic, or false lens. Both kinds of IOLs are designed to provide the same light-focusing function as the natural crystalline lens. This can be an alternative to LASIK, but LASIK is not an alternative to an IOL for treatment of cataracts.
A phakic intraocular lens (PIOL) is a special kind of intraocular lens that is implanted surgically into the eye to correct myopia (nearsightedness). It is called "phakic" because the eye's natural lens is left untouched. Intraocular lenses that are implanted into eyes after the eye's natural lens has been removed during cataract surgery are known as pseudophakic.
An eye examination is a series of tests performed to assess vision and ability to focus on and discern objects. It also includes other tests and examinations pertaining to the eyes. Eye examinations are primarily performed by an optometrist, ophthalmologist, or an orthoptist. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.
Cataract surgery, which is also called lens replacement surgery, is the removal of the natural lens of the human eye that has developed a cataract, an opaque or cloudy area. The eye's natural lens is usually replaced with an artificial intraocular lens (IOL).
A-scan ultrasound biometry, commonly referred to as an A-scan, is a routine type of diagnostic test used in optometry or ophthalmology. The A-scan provides data on the length of the eye, which is a major determinant in common sight disorders. The most common use of the A-scan is to determine eye length for calculation of intraocular lens power. Briefly, the total refractive power of the emmetropic eye is approximately 60. Of this power, the cornea provides roughly 40 diopters, and the crystalline lens 20 diopters. When a cataract is removed, the lens is replaced by an artificial lens implant. By measuring both the length of the eye (A-scan) and the power of the cornea (keratometry), a simple formula can be used to calculate the power of the intraocular lens needed. There are several different formulas that can be used depending on the actual characteristics of the eye.
The anterior chamber (AC) is the aqueous humor-filled space inside the eye between the iris and the cornea's innermost surface, the endothelium. Hyphema, anterior uveitis and glaucoma are three main pathologies in this area. In hyphema, blood fills the anterior chamber as a result of a hemorrhage, most commonly after a blunt eye injury. Anterior uveitis is an inflammatory process affecting the iris and ciliary body, with resulting inflammatory signs in the anterior chamber. In glaucoma, blockage of the trabecular meshwork prevents the normal outflow of aqueous humour, resulting in increased intraocular pressure, progressive damage to the optic nerve head, and eventually blindness.
Corneal topography, also known as photokeratoscopy or videokeratography, is a non-invasive medical imaging technique for mapping the anterior curvature of the cornea, the outer structure of the eye. Since the cornea is normally responsible for some 70% of the eye's refractive power, its topography is of critical importance in determining the quality of vision and corneal health.
Astigmatism is a type of refractive error due to rotational asymmetry in the eye's refractive power. This results in distorted or blurred vision at any distance. Other symptoms can include eyestrain, headaches, and trouble driving at night. Astigmatism often occurs at birth and can change or develop later in life. If it occurs in early life and is left untreated, it may result in amblyopia.
Ronald H. Silverman is an American ophthalmologist. He is currently Professor of Ophthalmic Science at Columbia University Medical Center. He is currently the director of the CUMC Basic Science Course in Ophthalmology, which takes place every January at the Harkness Eye Institute. He departed Weill Cornell Medical College in 2010, where he was Professor of Ophthalmology as well as a Dyson Scholar and the Research Director of the Bioacoustic Research Facility, Margaret M. Dyson Vision Research Institute at Weill Cornell.
Corneal pachymetry is the process of measuring the thickness of the cornea. A pachymeter is a medical device used to measure the thickness of the eye's cornea. It is used to perform corneal pachymetry prior to refractive surgery, for Keratoconus screening, LRI surgery and is useful in screening for patients suspected of developing glaucoma among other uses.
Vision of humans and other organisms depends on several organs such as the lens of the eye, and any vision correcting devices, which use optics to focus the image.
The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.
In ophthalmology, glued intraocular lens or glued IOL is a surgical technique for implantation, with the use of biological glue, of a posterior chamber IOL in eyes with deficient or absent posterior capsules. A quick-acting surgical fibrin sealant derived from human blood plasma, with both hemostatic and adhesive properties, is used.
Intraocular lens scaffold or IOL scaffold technique is a surgical procedure in ophthalmology. In cases where the posterior lens capsule is ruptured and the cataract has not yet been removed one can insert the intraocular lens (IOL) inside the eye under the cataract. This way the IOL acts as a scaffold and prevents the cataract pieces from falling inside the back of the eye. The cataract can then be removed safely by emulsifying it with ultrasound and aspiration. This technique is called IOL scaffold and was started by Amar Agarwal from Chennai, India, at Dr. Agarwal's Eye Hospital.
Manual small incision cataract surgery (MSICS) is an evolution of extracapsular cataract extraction (ECCE); the lens is removed from the eye through a self-sealing scleral tunnel wound. A well-constructed scleral tunnel is held closed by internal pressure, is watertight, and does not require suturing. The wound is relatively smaller than that in ECCE but is still markedly larger than a phacoemulsification wound. Comparative trials of MSICS against phaco in dense cataracts have found no difference in outcomes but MSICS had shorter operating times and significantly lower costs. MSICS has become the method of choice in the developing world because it provides high-quality outcomes with less surgically induced astigmatism than ECCE, no suture-related problems, quick rehabilitation, and fewer post-operative visits. MSICS is easy and fast to learn for the surgeon, cost effective, simple, and applicable to almost all types of cataract.