Ionescu-Tulcea theorem

Last updated

In the mathematical theory of probability, the Ionescu-Tulcea theorem, sometimes called the Ionesco Tulcea extension theorem, deals with the existence of probability measures for probabilistic events consisting of a countably infinite number of individual probabilistic events. In particular, the individual events may be independent or dependent with respect to each other. Thus, the statement goes beyond the mere existence of countable product measures. The theorem was proved by Cassius Ionescu-Tulcea in 1949. [1] [2]

Contents

Statement of the theorem

Suppose that is a probability space and for is a sequence of measurable spaces. For each let

be the Markov kernel derived from and , where

Then there exists a sequence of probability measures

defined on the product space for the sequence ,

and there exists a uniquely defined probability measure on , so that

is satisfied for each and . (The measure has conditional probabilities equal to the stochastic kernels.) [3]

Applications

The construction used in the proof of the Ionescu-Tulcea theorem is often used in the theory of Markov decision processes, and, in particular, the theory of Markov chains. [3]

See also

Sources

Related Research Articles

In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

<span class="mw-page-title-main">Markov property</span> Memoryless property of a stochastic process

In probability theory and statistics, the term Markov property refers to the memoryless property of a stochastic process, which means that its future evolution is independent of its history. It is named after the Russian mathematician Andrey Markov. The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take "on average" over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability. The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable.

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x as

In probability theory, an empirical process is a stochastic process that describes the proportion of objects in a system in a given state. For a process in a discrete state space a population continuous time Markov chain or Markov population model is a process which counts the number of objects in a given state . In mean field theory, limit theorems are considered and generalise the central limit theorem for empirical measures. Applications of the theory of empirical processes arise in non-parametric statistics.

In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In measure theory and probability, the monotone class theorem connects monotone classes and 𝜎-algebras. The theorem says that the smallest monotone class containing an algebra of sets is precisely the smallest 𝜎-algebra containing  It is used as a type of transfinite induction to prove many other theorems, such as Fubini's theorem.

In mathematics, the Kolmogorov extension theorem is a theorem that guarantees that a suitably "consistent" collection of finite-dimensional distributions will define a stochastic process. It is credited to the English mathematician Percy John Daniell and the Russian mathematician Andrey Nikolaevich Kolmogorov.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

An -superprocess, , within mathematics probability theory is a stochastic process on that is usually constructed as a special limit of near-critical branching diffusions.

In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel.

In probability theory, a Markov kernel is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

References

  1. Ionescu Tulcea, C. T. (1949). "Mesures dans les espaces produits". Atti Accad. Naz. Lincei Rend. 7: 208–211.
  2. Shalizi, Cosma. "Chapter 3. Building Infinite Processes from Regular Conditional Probability Distributions" (PDF). Cosma Shalizi, CMU Statistics, Carnegie Mellon University. Index of /~cshalizi/754/notes "Almost None of the Theory of Stochastic Processes: A Course on Random Processes, for Students of Measure-Theoretic Probability, with a View to Applications in Dynamics and Statistics by Cosma Rohilla Shalizi with Aryeh Kontorovich". stat.cmu.edu/~cshalizi.
  3. 1 2 Abate, Alessandro; Redig, Frank; Tkachev, Ilya (2014). "On the effect of perturbation of conditional probabilities in total variation". Statistics & Probability Letters. 88: 1–8. arXiv: 1311.3066 . doi:10.1016/j.spl.2014.01.009. arXiv preprint