Iron aluminides are intermetallic compounds of iron and aluminium - they typically contain ~18% Al or more.
Good oxide and sulfur resistance, with strength comparable to steel alloys, and low cost of materials have made these compounds of metallurgical interest - however low ductility and issues with hydrogen embrittlement are barriers to their processing and use in structural applications.
High corrosion resistance of Iron alloys containing more than 18% aluminium was first noted in the 1930s. [1] Their tensile strength compares favorably with steels, whilst utilizing only common elements; however they have low ductility at room temperature, and strength drops off substantially over 600 °C. [1] The alloys also have good sulfide and oxidation resistance, good wear resistance, and lower density than steels. [2] Peak strength and hardness is reached at the Fe3Al stoichiometric region. [1] Although Al gives corrosion resistance via an oxide film surface, reaction (with water) may also give rise to embrittlement via hydrogen produced in the reaction between Al and H2O. [1]
Chromium (2-6%) improves room temperature ductility. In 1996, Kamey [1] said the mechanism was not fully understood, but offered a hypothesis that it could reduce hydrogen embrittlement via its ability to stabilise the FeAl phase. [1] Other explanations have included that chromium could facilitate slipping via crystal dislocations, and that it could contribute to surface passivation and prevent embrittling water reactions. [3] A disordered alloy (designated FAPY) containing ~16% Al, ~5.4% Cr plus ~0.1% Zr, C, and Y, with ~1% Mo showed much improved ductility, only dropping substantially under ~200C (cf 650C for Fe3Al); this alloy also is cold workable. [2]
Below ~18-20% (atomic) Al the aluminium exists as a solid solution in iron. Above this concentration there are FeAl (B2 phase) and Fe3Al (DO3 phase) existing in the form of caesium chloride (CsCl) and α-bismuth trifluoride (BiF3) crystal structures. [1] Above ~550 °C the Fe3Al phase is transformed in FeAl (and Fe). [3]
Above ~50% Al (atomic) Fe5Al8, FeAl2, Fe2Al5, and Fe4Al13 are also known - the Al rich phases show high brittleness. [3]
The reaction between Al and Fe to generate iron aluminide is exothermic. Production from direct melting of Al and Fe is economical, but any water in the charge produces issues with the generation of hydrogen which shows solubility in the iron aluminide, leading to gas voids. Blowing with argon or vacuum melting alleviates this. [2]
Large grain size is greatly deleterious to ductility, especially with Fe3Al, and is encountered in cast iron aluminides. [2]
Coatings of iron aluminide can be prepared by chemical vapor deposition onto iron. [4]
The high corrosion resistance of FeAl alloys make them desirable for high temperature applications in corrosive environments. However, FeAl alloys have intrinsically low creep strength at high temperatures because of the high diffusivity of the B2 structure. [5] In order to be used as a high temperature alloy, FeAl must be treated to increase its creep resistance. The two most common methods to increase the creep resistance of FeAl are solid solution strengthening and precipitation hardening. [5]
Solid solution strengthening was shown to decrease the steady state creep rate and the power law exponent of FeAl by increasing the concentration of other transition metals in a FeAl alloy. [6] While this did increase the creep strength of the material, it is still limited by the ductility of FeAl, as the strengthened alloy fractured after just 0.3% strain.
Precipitation hardening in FeAl is commonly achieved with two different types of precipitates: oxide particles and carbides. [5] 5 nm Y based oxide particles have been shown to increase the creep resistance of FeAl at temperatures up to 800C. [7] Similarly, Ti based carbides have been shown to have high creep resistance at low stresses, consistent with the precipitation strengthening mechanism. [8] While precipitation strengthening is excellent at increasing creep resistance, the stability of the precipitates at high temperatures is a limiting factor. Carbides can be dissolved into the FeAl and oxide particles can coarsen at temperatures over 1000C. [5] As a result, FeAl alloys have not been effectively strengthened for applications that require temperatures higher than 1000C and different strategies will be needed to further increase the possible operating temperature.
Potential uses for iron alumides include : electrical heating elements, piping and other work for high temperature process including piping for coal gasification and for superheater and re-heater tubes. [1] It has also been suggested as a structural material for lunar use. [9] Thanks to the good combination of mechanical and oxidation properties, iron aluminide has been successfully used as a binder phase for tungsten carbides. [10] [11] Also, replacing Cobalt in conventional WC-Co cermets with FeAl in the Laser cladding process caused improving oxidation and wear properties. [12] [13]
Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable for use as solder should have a lower melting point than the pieces to be joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.
In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.
Tungsten carbide is a chemical compound containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in industrial machinery, cutting tools, chisels, abrasives, armor-piercing bullets and jewelry.
A cermet is a composite material composed of ceramic and metal materials.
Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals. Once absorbed, hydrogen lowers the stress required for cracks in the metal to initiate and propagate, resulting in embrittlement. Hydrogen embrittlement occurs in steels, as well as in iron, nickel, titanium, cobalt, and their alloys. Copper, aluminium, and stainless steels are less susceptible to hydrogen embrittlement.
An intermetallic is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Intermetallics are generally hard and brittle, with good high-temperature mechanical properties. They can be classified as stoichiometric or nonstoichiometic intermetallic compounds.
Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates. Original development was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.
Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminum and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy.
Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.
Cryogenic hardening is a cryogenic treatment process where the material is cooled to approximately −185 °C (−301 °F), usually using liquid nitrogen. It can have a profound effect on the mechanical properties of certain steels, provided their composition and prior heat treatment are such that they retain some austenite at room temperature. It is designed to increase the amount of martensite in the steel's crystal structure, increasing its strength and hardness, sometimes at the cost of toughness. Presently this treatment is being used on tool steels, high-carbon, high-chromium steels and in some cases to cemented carbide to obtain excellent wear resistance. Recent research shows that there is precipitation of fine carbides in the matrix during this treatment which imparts very high wear resistance to the steels.
A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.
Spark plasma sintering (SPS), also known as field assisted sintering technique (FAST) or pulsed electric current sintering (PECS), or plasma pressure compaction (P2C) is a sintering technique.
Titanium aluminide, commonly gamma titanium, is an intermetallic chemical compound. It is lightweight and resistant to oxidation and heat, but has low ductility. The density of γ-TiAl is about 4.0 g/cm3. It finds use in several applications including aircraft, jet engines, sporting equipment and automobiles. The development of TiAl based alloys began circa 1970. The alloys have been used in these applications only since about 2000.
Embrittlement is a significant decrease of ductility of a material, which makes the material brittle. Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment. Various materials have different mechanisms of embrittlement, therefore it can manifest in a variety of ways, from slow crack growth to a reduction of tensile ductility and toughness.
Alloy steel is steel that is alloyed with a variety of elements in amounts between 1.0% and 50% by weight, typically to improve its mechanical properties.
Nickel aluminide refers to either of two widely used intermetallic compounds, Ni3Al or NiAl, but the term is sometimes used to refer to any nickel–aluminium alloy. These alloys are widely used because of their high strength even at high temperature, low density, corrosion resistance, and ease of production. Ni3Al is of specific interest as a precipitate in nickel-based superalloys, where it is called the γ' (gamma prime) phase. It gives these alloys high strength and creep resistance up to 0.7–0.8 of its melting temperature. Meanwhile, NiAl displays excellent properties such as lower density and higher melting temperature than those of Ni3Al, and good thermal conductivity and oxidation resistance. These properties make it attractive for special high-temperature applications like coatings on blades in gas turbines and jet engines. However, both these alloys have the disadvantage of being quite brittle at room temperature, with Ni3Al remaining brittle at high temperatures as well. To address this problem, has been shown that Ni3Al can be made ductile when manufactured in single-crystal form rather than in polycrystalline form.
Oxide dispersion strengthened alloys (ODS) are alloys that consist of a metal matrix with small oxide particles dispersed within it. They have high heat resistance, strength, and ductility. Alloys of nickel are the most common but includes iron aluminum alloys.
In materials science, the yield strength anomaly refers to materials wherein the yield strength increases with temperature. For the majority of materials, the yield strength decreases with increasing temperature. In metals, this decrease in yield strength is due to the thermal activation of dislocation motion, resulting in easier plastic deformation at higher temperatures.
High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Prior to the synthesis of these substances, typical metal alloys comprised one or two major components with smaller amounts of other elements. For example, additional elements can be added to iron to improve its properties, thereby creating an iron-based alloy, but typically in fairly low proportions, such as the proportions of carbon, manganese, and others in various steels. Hence, high-entropy alloys are a novel class of materials. The term "high-entropy alloys" was coined by Taiwanese scientist Jien-Wei Yeh because the entropy increase of mixing is substantially higher when there is a larger number of elements in the mix, and their proportions are more nearly equal. Some alternative names, such as multi-component alloys, compositionally complex alloys and multi-principal-element alloys are also suggested by other researchers.
κ-Carbides are a special class of carbide structures. They are most known for appearing in steels containing manganese and aluminium where they have the molecular formula (Fe,Mn)
3AlC.