Isodisomy

Last updated
Isodisomy
Specialty Obstetrics, pediatrics
Symptoms variable
CausesGenetic and environmental factors
Diagnostic method Amniocentesis, medical imaging
Deathssometimes fatal

Isodisomy is a form of uniparental disomy in which both copies of a chromosome, or parts of it, are inherited from the same parent. It differs from heterodisomy in that instead of a complete pair of homologous chromosomes, the fertilized ovum contains two identical copies of a single parental chromosome. [1] [2] This may result in the expression of recessive traits in the offspring. [3] Some authors use the term uniparental disomy and isodisomy interchangeably. [4]

Contents

This genetic abnormality can result in the birth of a normal child who has no obvious disability. [1] It is associated with abnormalities in the growth of the offspring and in the placenta. [2] Isodisomy may be a common phenomenon in human cells, and "might play a role in the pathogenesis of various nonmalignant disorders and might explain local impaired function and/or clinical variability." [5]

Related Research Articles

<span class="mw-page-title-main">Genetic disorder</span> Health problem caused by one or more abnormalities in the genome

A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosome abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome. The mutation responsible can occur spontaneously before embryonic development, or it can be inherited from two parents who are carriers of a faulty gene or from a parent with the disorder. When the genetic disorder is inherited from one or both parents, it is also classified as a hereditary disease. Some disorders are caused by a mutation on the X chromosome and have X-linked inheritance. Very few disorders are inherited on the Y chromosome or mitochondrial DNA.

<span class="mw-page-title-main">Heredity</span> Passing of traits to offspring from the species parents or ancestor

Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second is called recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance, such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

<span class="mw-page-title-main">Aneuploidy</span> Presence of an abnormal number of chromosomes in a cell

Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any number of complete chromosome sets is called a euploid cell.

<span class="mw-page-title-main">Uniparental disomy</span> Inheritance of two copies of one parents chromosome

Uniparental disomy (UPD) occurs when a person receives two copies of a chromosome, or of part of a chromosome, from one parent and no copy from the other. UPD can be the result of heterodisomy, in which a pair of non-identical chromosomes are inherited from one parent or isodisomy, in which a single chromosome from one parent is duplicated. Uniparental disomy may have clinical relevance for several reasons. For example, either isodisomy or heterodisomy can disrupt parent-specific genomic imprinting, resulting in imprinting disorders. Additionally, isodisomy leads to large blocks of homozygosity, which may lead to the uncovering of recessive genes, a similar phenomenon seen in inbred children of consanguineous partners.

<span class="mw-page-title-main">Nondisjunction</span> Failure to separate properly during cell division

Nondisjunction is the failure of homologous chromosomes or sister chromatids to separate properly during cell division (mitosis/meiosis). There are three forms of nondisjunction: failure of a pair of homologous chromosomes to separate in meiosis I, failure of sister chromatids to separate during meiosis II, and failure of sister chromatids to separate during mitosis. Nondisjunction results in daughter cells with abnormal chromosome numbers (aneuploidy).

<span class="mw-page-title-main">Chromosomal translocation</span> Phenomenon that results in unusual rearrangement of chromosomes

In genetics, chromosome translocation is a phenomenon that results in unusual rearrangement of chromosomes. This includes balanced and unbalanced translocation, with two main types: reciprocal, and Robertsonian translocation. Reciprocal translocation is a chromosome abnormality caused by exchange of parts between non-homologous chromosomes. Two detached fragments of two different chromosomes are switched. Robertsonian translocation occurs when two non-homologous chromosomes get attached, meaning that given two healthy pairs of chromosomes, one of each pair "sticks" and blends together homogeneously.

<span class="mw-page-title-main">Robertsonian translocation</span> Human chromosomal abnormality

Robertsonian translocation (ROB) is a chromosomal abnormality where the entire long arms of two different chromosomes become fused to each other. It is the most common form of chromosomal translocation in humans, affecting 1 out of every 1,000 babies born. It does not usually cause medical problems, though some people may produce gametes with an incorrect number of chromosomes, resulting in a risk of miscarriage. In rare cases this translocation results in Down syndrome and Patau syndrome. Robertsonian translocations result in a reduction in the number of chromosomes. A Robertsonian evolutionary fusion, which may have occurred in the common ancestor of humans and other great apes, is the reason humans have 46 chromosomes while all other primates have 48. Detailed DNA studies of chimpanzee, orangutan, gorilla and bonobo apes has determined that where human chromosome 2 is present in our DNA in all four great apes this is split into two separate chromosomes typically numbered 2a and 2b. Similarly, the fact that horses have 64 chromosomes and donkeys 62, and that they can still have common, albeit usually infertile, offspring, may be due to a Robertsonian evolutionary fusion at some point in the descent of today's donkeys from their common ancestor.

<span class="mw-page-title-main">X-linked ichthyosis</span> Medical condition

X-linked ichthyosis is a skin condition caused by the hereditary deficiency of the steroid sulfatase (STS) enzyme that affects 1 in 2000 to 1 in 6000 males. XLI manifests with dry, scaly skin and is due to deletions or mutations in the STS gene. XLI can also occur in the context of larger deletions causing contiguous gene syndromes. Treatment is largely aimed at alleviating the skin symptoms. The term is from the Ancient Greek 'ichthys' meaning 'fish'.

<span class="mw-page-title-main">Cartilage–hair hypoplasia</span> Medical condition

Cartilage–hair hypoplasia (CHH) is a rare genetic disorder. Symptoms may include short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency, and predisposition to cancer. It was first reported by Victor McKusick in 1965.

<span class="mw-page-title-main">Chromosome 15</span> Human chromosome

Chromosome 15 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 15 spans about 99.7 million base pairs and represents between 3% and 3.5% of the total DNA in cells. Chromosome 15 is an acrocentric chromosome, with a very small short arm, which contains few protein coding genes among its 19 million base pairs. It has a larger long arm that is gene rich, spanning about 83 million base pairs.

<span class="mw-page-title-main">Malonic aciduria</span> Medical condition

Malonic aciduria or malonyl-CoA decarboxylase deficiency (MCD) is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-CoA decarboxylase. This enzyme breaks down Malonyl-CoA into acetyl-CoA and carbon dioxide.

Confined placental mosaicism (CPM) represents a discrepancy between the chromosomal makeup of the cells in the placenta and the cells in the fetus. CPM was first described by Kalousek and Dill in 1983. CPM is diagnosed when some trisomic cells are detected on chorionic villus sampling and only normal cells are found on a subsequent prenatal test, such as amniocentesis or fetal blood sampling. In theory, CPM is when the trisomic cells are found only in the placenta. CPM is detected in approximately 1-2% of ongoing pregnancies that are studied by chorionic villus sampling (CVS) at 10 to 12 weeks of pregnancy. Chorionic villus sampling is a prenatal procedure which involves a placental biopsy. Most commonly when CPM is found it represents a trisomic cell line in the placenta and a normal diploid chromosome complement in the baby. However, the fetus is involved in about 10% of cases.

Trisomic rescue is a genetic phenomenon in which a fertilized ovum containing three copies of a chromosome loses one of these chromosomes to form a diploid chromosome complement. If both of the retained chromosomes come from the same parent, then uniparental disomy results. If the retained chromosomes come from different parents then there are no phenotypic or genotypic anomalies. The mechanism of trisomic rescue has been well confirmed in vivo, and alternative mechanisms that occur in trisomies are rare in comparison.

<span class="mw-page-title-main">Cyclic nucleotide gated channel beta 3</span> Protein-coding gene in the species Homo sapiens

Cyclic nucleotide gated channel beta 3, also known as CNGB3, is a human gene encoding an ion channel protein.

In genetics, virtual karyotype is the digital information reflecting a karyotype, resulting from the analysis of short sequences of DNA from specific loci all over the genome, which are isolated and enumerated. It detects genomic copy number variations at a higher resolution for level than conventional karyotyping or chromosome-based comparative genomic hybridization (CGH). The main methods used for creating virtual karyotypes are array-comparative genomic hybridization and SNP arrays.

<span class="mw-page-title-main">Neonatal diabetes</span> Medical condition

Neonatal diabetes mellitus (NDM) is a disease that affects an infant and their body's ability to produce or use insulin. NDM is a kind of diabetes that is monogenic and arises in the first 6 months of life. Infants do not produce enough insulin, leading to an increase in glucose accumulation. It is a rare disease, occurring in only one in 100,000 to 500,000 live births. NDM can be mistaken for the much more common type 1 diabetes, but type 1 diabetes usually occurs later than the first 6 months of life. There are two types of NDM: permanent neonatal diabetes mellitus (PNDM), a lifelong condition, and transient neonatal diabetes mellitus (TNDM), a form of diabetes that disappears during the infant stage but may reappear later in life.

<span class="mw-page-title-main">Silver–Russell syndrome</span> Medical condition

Silver–Russell syndrome, also called Silver–Russell dwarfism, is a rare congenital growth disorder. In the United States it is usually referred to as Russell–Silver syndrome, and Silver–Russell syndrome elsewhere. It is one of 200 types of dwarfism and one of five types of primordial dwarfism.

<span class="mw-page-title-main">Donnai–Barrow syndrome</span> Medical condition

Donnai–Barrow syndrome is a genetic disorder first described by Dian Donnai and Margaret Barrow in 1993. It is associated with LRP2. It is an inherited (genetic) disorder that affects many parts of the body.

Chromosomal deletion syndromes result from deletion of parts of chromosomes. Depending on the location, size, and whom the deletion is inherited from, there are a few known different variations of chromosome deletions. Chromosomal deletion syndromes typically involve larger deletions that are visible using karyotyping techniques. Smaller deletions result in Microdeletion syndrome, which are detected using fluorescence in situ hybridization (FISH)

References

  1. 1 2 Liu, WeiQiang; Zhang, HuiMin; Wang, Jian; Yu, GuoJiu; Qiu, WenJun; Li, ZhiHua; Chen, Min; Choy, Kwong Wai; Sun, XiaoFang (2015). "Prenatal diagnosis of complete maternal uniparental isodisomy of chromosome 4 in a fetus without congenital abnormality or inherited disease-associated variations". Molecular Cytogenetics. 8 (1): 85. doi: 10.1186/s13039-015-0190-z . ISSN   1755-8166. PMC   4632482 . PMID   26539248.
  2. 1 2 Leveno 2013, p. 51.
  3. "Heterodisomy and isodisomy: imprinting or unmasking of a mutant recessive allele?" (PDF). Expert Reviews in Molecular Medicine. Retrieved 11 June 2017.
  4. Wilkie, Andrew O. M.; Malcolm, Susan; Pembrey, Marcus E. (1991). "Isodisomy in BWS chromosomes". Nature. 353 (6347): 802. Bibcode:1991Natur.353..802W. doi: 10.1038/353802b0 . ISSN   0028-0836. PMID   1944556. S2CID   4340990.
  5. Amyere, Mustapha; Aerts, Virginie; Brouillard, Pascal; McIntyre, Brendan A.S.; Duhoux, François P.; Wassef, Michel; Enjolras, Odile; Mulliken, John B.; Devuyst, Olivier; Antoine-Poirel, Hélène; Boon, Laurence M.; Vikkula, Miikka (2013-02-07). "Somatic Uniparental Isodisomy Explains Multifocality of Glomuvenous Malformations". The American Journal of Human Genetics. 92 (2): 188–196. doi: 10.1016/j.ajhg.2012.12.017 . ISSN   0002-9297. PMC   3567282 . PMID   23375657.

Bibliography