Isolated horizon

Last updated

It was customary to represent black hole horizons via stationary solutions of field equations, i.e., solutions which admit a time-translational Killing vector field everywhere, not just in a small neighborhood of the black hole. While this simple idealization was natural as a starting point, it is overly restrictive. Physically, it should be sufficient to impose boundary conditions at the horizon which ensure only that the black hole itself is isolated. That is, it should suffice to demand only that the intrinsic geometry of the horizon be time independent, whereas the geometry outside may be dynamical and admit gravitational and other radiation.

Contents

An advantage of isolated horizons over event horizons is that while one needs the entire spacetime history to locate an event horizon, isolated horizons are defined using local spacetime structures only. The laws of black hole mechanics, initially proved for event horizons, are generalized to isolated horizons.

An isolated horizon refers to the quasilocal definition [1] of a black hole which is in equilibrium with its exterior, [2] [3] [4] and both the intrinsic and extrinsic structures of an isolated horizon (IH) are preserved by the null equivalence class. The concept of IHs is developed based on the ideas of non-expanding horizons (NEHs) and weakly isolated horizons (WIHs): A NEH is a null surface whose intrinsic structure is preserved and constitutes the geometric prototype of WIHs and IHs, while a WIH is a NEH with a well-defined surface gravity and based on which the black-hole mechanics can be quasilocally generalized.

Definition of IHs

A three-dimensional submanifold equipped with an equivalence class is defined as an IH if it respects the following conditions: [2] [3] [4]


(i) is null and topologically ;
(ii) Along any null normal field tangent to , the outgoing expansion rate vanishes;
(iii) All field equations hold on , and the stress–energy tensor on is such that is a future-directed causal vector () for any future-directed null normal .
(iv) The commutator , where denotes the induced connection on the horizon.

Note: Following the convention set up in refs., [2] [3] [4] "hat" over the equality symbol means equality on the black-hole horizons (NEHs), and "hat" over quantities and operators (, , etc.) denotes those on the horizon or on a foliation leaf of the horizon (this makes no difference for IHs).

Boundary conditions of IHs

The properties of a generic IH manifest themselves as a set of boundary conditions expressed in the language of Newman–Penrose formalism,


(geodesic), (twist-free, hypersurface orthogonal), (expansion-free), (shear-free),

(no flux of any kinds of matter charges across the horizon),

(no gravitational waves across the horizon).

In addition, for an electromagnetic IH,


Moreover, in a tetrad adapted to the IH structure, [3] [4] we have


Remark: In fact, these boundary conditions of IHs just inherit those of NEHs.

Extension of the on-horizon adapted tetrad

Full analysis of the geometry and mechanics of an IH relies on the on-horizon adapted tetrad. [3] [4] However, a more comprehensive view of IHs often requires investigation of the near-horizon vicinity and off-horizon exterior. [5] [6] [7] [8] [9] [10] The adapted tetrad on an IH can be smoothly extended to the following form which cover both the horizon and off-horizon regions,




where are either real isothermal coordinates or complex stereographic coordinates labeling the cross-sections of { v=constant, r=constant}, and the gauge conditions in this tetrad are

Applications

The local nature of the definition of an isolated horizon makes it more convenient for numerical studies.

The local nature makes the Hamiltonian description viable. This framework offers a natural point of departure for non-perturbative quantization and derivation of black hole entropy from microscopic degrees of freedom. [11]

See also

Related Research Articles

In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon. In a black hole, the singularity is completely enclosed by a boundary known as the event horizon, inside which the gravitational force of the singularity is so strong that light cannot escape. Hence, objects inside the event horizon—including the singularity itself—cannot be directly observed. A naked singularity, by contrast, would be observable from the outside.

Loop quantum gravity Theory of quantum gravity, merging quantum mechanics and general relativity

A theory of quantum gravity, loop quantum gravity (LQG) attempts to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. As a candidate for quantum gravity, LQG competes with string theory.

Black hole thermodynamics Area of physical study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black-hole event horizons. As the study of the statistical mechanics of black-body radiation led to the advent of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

Kerr metric

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially-symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation similar to general relativity. The theory was first proposed by Élie Cartan in 1922. Einstein–Cartan theory is the simplest Poincaré gauge theory.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

Kerr–Newman metric

The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

Newman–Penrose formalism Notation in general relativity

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

The BTZ black hole, named after Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli, is a black hole solution for (2+1)-dimensional topological gravity with a negative cosmological constant.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

Relativistic images

Relativistic images are images of gravitational lensing which result due to light deflections by angles .

In theoretical physics, a dynamical horizon (DH) is a local description of evolving black hole horizons. In the literature there exist two different mathematical formulations of DHs—the 2+2 formulation developed by Sean Hayward and the 3+1 formulation developed by Abhay Ashtekar and others. It provides a description of a black hole that is evolving. A related formalism, for black holes with zero influx, is an isolated horizon.

A non-expanding horizon (NEH) is an enclosed null surface whose intrinsic structure is preserved. An NEH is the geometric prototype of an isolated horizon which describes a black hole in equilibrium with its exterior from the quasilocal perspective. It is based on the concept and geometry of NEHs that the two quasilocal definitions of black holes, weakly isolated horizons and isolated horizons, are developed.

Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad, where is a pair of real null vectors and is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature

The near-horizon metric (NHM) refers to the near-horizon limit of the global metric of a black hole. NHMs play an important role in studying the geometry and topology of black holes, but are only well defined for extremal black holes. NHMs are expressed in Gaussian null coordinates, and one important property is that the dependence on the coordinate is fixed in the near-horizon limit.

In physics, geometrothermodynamics (GTD) is a formalism developed in 2007 by Hernando Quevedo to describe the properties of thermodynamic systems in terms of concepts of differential geometry.

Conformastatic spacetimes refer to a special class of static solutions to Einstein's equation in general relativity.

The pressuron is a hypothetical scalar particle which couples to both gravity and matter theorised in 2013. Although originally postulated without self-interaction potential, the pressuron is also a dark energy candidate when it has such a potential. The pressuron takes its name from the fact that it decouples from matter in pressure-less regimes, allowing the scalar-tensor theory of gravity involving it to pass solar system tests, as well as tests on the equivalence principle, even though it is fundamentally coupled to matter. Such a decoupling mechanism could explain why gravitation seems to be well described by general relativity at present epoch, while it could actually be more complex than that. Because of the way it couples to matter, the pressuron is a special case of the hypothetical string dilaton. Therefore, it is one of the possible solutions to the present non-observation of various signals coming from massless or light scalar fields that are generically predicted in string theory.

References

  1. Booth, Ivan (2005-11-01). "Black-hole boundaries". Canadian Journal of Physics. 83 (11): 1073–1099. arXiv: gr-qc/0508107 . Bibcode:2005CaJPh..83.1073B. doi:10.1139/p05-063. ISSN   0008-4204. S2CID   119350115.
  2. 1 2 3 Ashtekar, Abhay; Beetle, Christopher; Dreyer, Olaf; Fairhurst, Stephen; Krishnan, Badri; et al. (2000-10-23). "Generic Isolated Horizons and Their Applications". Physical Review Letters. 85 (17): 3564–3567. arXiv: gr-qc/0006006 . Bibcode:2000PhRvL..85.3564A. doi:10.1103/physrevlett.85.3564. ISSN   0031-9007. PMID   11030951. S2CID   30612121.
  3. 1 2 3 4 5 Ashtekar, Abhay; Beetle, Christopher; Lewandowski, Jerzy (2002-03-05). "Geometry of generic isolated horizons". Classical and Quantum Gravity. 19 (6): 1195–1225. arXiv: gr-qc/0111067 . Bibcode:2002CQGra..19.1195A. doi:10.1088/0264-9381/19/6/311. ISSN   0264-9381. S2CID   15207198.
  4. 1 2 3 4 5 Ashtekar, Abhay; Fairhurst, Stephen; Krishnan, Badri (2000-10-27). "Isolated horizons: Hamiltonian evolution and the first law". Physical Review D. American Physical Society (APS). 62 (10): 104025. arXiv: gr-qc/0005083 . Bibcode:2000PhRvD..62j4025A. doi:10.1103/physrevd.62.104025. ISSN   0556-2821. S2CID   771959.
  5. Wu, Xiaoning; Gao, Sijie (2007-02-28). "Tunneling effect near a weakly isolated horizon". Physical Review D. 75 (4): 044027. arXiv: gr-qc/0702033 . Bibcode:2007PhRvD..75d4027W. doi:10.1103/physrevd.75.044027. ISSN   1550-7998. S2CID   119090706.
  6. Wu, Xiaoning; Huang, Chao-Guang; Sun, Jia-Rui (2008-06-18). "Gravitational anomaly and Hawking radiation near a weakly isolated horizon". Physical Review D. 77 (12): 124023. arXiv: 0801.1347 . Bibcode:2008PhRvD..77l4023W. doi:10.1103/physrevd.77.124023. ISSN   1550-7998. S2CID   118359702.
  7. Yu-Huei Wu, Chih-Hung Wang. Gravitational radiation of generic isolated horizons. arXiv:0807.2649v1[gr-qc]
  8. Wu, Xiao-Ning; Tian, Yu (2009-07-15). "Extremal isolated horizon/CFT correspondence". Physical Review D. 80 (2): 024014. arXiv: 0904.1554 . Bibcode:2009PhRvD..80b4014W. doi:10.1103/physrevd.80.024014. ISSN   1550-7998. S2CID   119273111.
  9. Wu, Yu-Huei; Wang, Chih-Hung (2009-09-03). "Gravitational radiations of generic isolated horizons and nonrotating dynamical horizons from asymptotic expansions". Physical Review D. 80 (6): 063002. arXiv: 0906.1551 . Bibcode:2009PhRvD..80f3002W. doi:10.1103/physrevd.80.063002. ISSN   1550-7998. S2CID   119297093.
  10. Krishnan, Badri (2012-08-28). "The spacetime in the neighborhood of a general isolated black hole". Classical and Quantum Gravity. IOP Publishing. 29 (20): 205006. arXiv: 1204.4345 . Bibcode:2012CQGra..29t5006K. doi:10.1088/0264-9381/29/20/205006. ISSN   0264-9381. S2CID   119286518.
  11. Ashtekar, Abhay; Baez, John C.; Krasnov, Kirill (2000). "Quantum geometry of isolated horizons and black hole entropy". Advances in Theoretical and Mathematical Physics. 4 (1): 1–94. arXiv: gr-qc/0005126 . doi: 10.4310/atmp.2000.v4.n1.a1 . ISSN   1095-0761.