Jacobi coordinates

Last updated
Jacobi coordinates for two-body problem; Jacobi coordinates are
R
=
m
1
M
x
1
+
m
2
M
x
2
{\displaystyle {\boldsymbol {R}}={\frac {m_{1}}{M}}{\boldsymbol {x}}_{1}+{\frac {m_{2}}{M}}{\boldsymbol {x}}_{2}}
and
r
=
x
1
-
x
2
{\displaystyle {\boldsymbol {r}}={\boldsymbol {x}}_{1}-{\boldsymbol {x}}_{2}}
with
M
=
m
1
+
m
2
{\displaystyle M=m_{1}+m_{2}}
. Two-body Jacobi coordinates.JPG
Jacobi coordinates for two-body problem; Jacobi coordinates are and with .
A possible set of Jacobi coordinates for four-body problem; the Jacobi coordinates are r1, r2, r3 and the center of mass R. See Cornille. Jacobi coordinates -- illustration for four bodies.svg
A possible set of Jacobi coordinates for four-body problem; the Jacobi coordinates are r1, r2, r3 and the center of mass R. See Cornille.

In the theory of many-particle systems, Jacobi coordinates often are used to simplify the mathematical formulation. These coordinates are particularly common in treating polyatomic molecules and chemical reactions, [3] and in celestial mechanics. [4] An algorithm for generating the Jacobi coordinates for N bodies may be based upon binary trees. [5] In words, the algorithm is described as follows: [5]

Let mj and mk be the masses of two bodies that are replaced by a new body of virtual mass M = mj + mk. The position coordinates xj and xk are replaced by their relative position rjk = xj  xk and by the vector to their center of mass Rjk = (mjqj + mkqk)/(mj + mk). The node in the binary tree corresponding to the virtual body has mj as its right child and mk as its left child. The order of children indicates the relative coordinate points from xk to xj. Repeat the above step for N  1 bodies, that is, the N  2 original bodies plus the new virtual body.

For the N-body problem the result is: [2]

with

The vector is the center of mass of all the bodies and is the relative coordinate between the particles 1 and 2:

The result one is left with is thus a system of N-1 translationally invariant coordinates and a center of mass coordinate , from iteratively reducing two-body systems within the many-body system.

This change of coordinates has associated Jacobian equal to .

If one is interested in evaluating a free energy operator in these coordinates, one obtains

In the calculations can be useful the following identity

.

Related Research Articles

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, frisbees, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. Mathematically, the theorem states

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Moment of inertia</span> Scalar measure of the rotational inertia with respect to a fixed axis of rotation

The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.

In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules and aggregates of molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and magnetic properties, and reactivity.

In classical mechanics, Appell's equation of motion is an alternative general formulation of classical mechanics described by Josiah Willard Gibbs in 1879 and Paul Émile Appell in 1900.

In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay. Conversely, "bright" transitions will have large oscillator strengths. The oscillator strength can be thought of as the ratio between the quantum mechanical transition rate and the classical absorption/emission rate of a single electron oscillator with the same frequency as the transition.

This article describes a particle in planar motion when observed from non-inertial reference frames. The most famous examples of planar motion are related to the motion of two spheres that are gravitationally attracted to one another, and the generalization of this problem to planetary motion. See centrifugal force, two-body problem, orbit and Kepler's laws of planetary motion. Those problems fall in the general field of analytical dynamics, determining orbits from the given force laws. This article is focused more on the kinematical issues surrounding planar motion, that is, the determination of the forces necessary to result in a certain trajectory given the particle trajectory.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

References

  1. David Betounes (2001). Differential Equations . Springer. p. 58; Figure 2.15. ISBN   0-387-95140-7.
  2. 1 2 Patrick Cornille (2003). "Partition of forces using Jacobi coordinates". Advanced electromagnetism and vacuum physics. World Scientific. p. 102. ISBN   981-238-367-0.
  3. John Z. H. Zhang (1999). Theory and application of quantum molecular dynamics. World Scientific. p. 104. ISBN   981-02-3388-4.
  4. For example, see Edward Belbruno (2004). Capture Dynamics and Chaotic Motions in Celestial Mechanics. Princeton University Press. p. 9. ISBN   0-691-09480-2.
  5. 1 2 Hildeberto Cabral, Florin Diacu (2002). "Appendix A: Canonical transformations to Jacobi coordinates". Classical and celestial mechanics. Princeton University Press. p. 230. ISBN   0-691-05022-8.