Jan Denef (born 4 September 1951) is a Belgian mathematician. He is an Emeritus Professor of Mathematics at the Katholieke Universiteit Leuven (KU Leuven). [1]
Denef obtained his PhD from KU Leuven in 1975 with a thesis on Hilbert's tenth problem; his advisors were Louis Philippe Bouckaert and Willem Kuijk. [2]
He is a specialist of model theory, number theory and algebraic geometry. He is well known for his early work on Hilbert's tenth problem and for developing the theory of motivic integration in a series of papers with François Loeser. He has also worked on computational number theory.
Recently he proved a conjecture of Jean-Louis Colliot-Thélène which generalizes the Ax–Kochen theorem.
In 2002 Denef was an Invited Speaker at the International Congresses of Mathematicians in Beijing. His Hirsch-index is 24.
Alexander Grothendieck was a French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.
David Hilbert was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics.
Vladimir Igorevich Arnold was a Soviet and Russian mathematician. While he is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, he made revolutionary and deep contributions in several areas including geometrical theory of dynamical systems theory, algebra, catastrophe theory, topology, algebraic geometry, symplectic geometry, symplectic topology, differential equations, classical mechanics, differential geometric approach to hydrodynamics, geometric analysis and singularity theory, including posing the ADE classification problem, since his first main result—the solution of Hilbert's thirteenth problem in 1957 at the age of 19. He co-founded two new branches of mathematics—KAM theory, and topological Galois theory. He is widely regarded as one of the greatest mathematicians of all time.
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm which, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American Mathematical Society.
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.
Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.
The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for distinguished research work and writing in the field of mathematics. Since 1993, there has been a formal division into three categories.
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.
Motivic integration is a notion in algebraic geometry that was introduced by Maxim Kontsevich in 1995 and was developed by Jan Denef and François Loeser. Since its introduction it has proved to be quite useful in various branches of algebraic geometry, most notably birational geometry and singularity theory. Roughly speaking, motivic integration assigns to subsets of the arc space of an algebraic variety, a volume living in the Grothendieck ring of algebraic varieties. The naming 'motivic' mirrors the fact that unlike ordinary integration, for which the values are real numbers, in motivic integration the values are geometric in nature.
François Loeser is a French mathematician. He is Professor of Mathematics at the Pierre-and-Marie-Curie University in Paris. From 2000 to 2010 he was Professor at École Normale Supérieure. Since 2015, he is a senior member of the Institut Universitaire de France.
Angus John Macintyre FRS, FRSE is a British mathematician and logician who is a leading figure in model theory, logic, and their applications in algebra, algebraic geometry, and number theory. He is Emeritus Professor of Mathematics, at Queen Mary University of London.
A timeline of algebra and geometry
The Story of Maths is a four-part British television series outlining aspects of the history of mathematics. It was a co-production between the Open University and the BBC and aired in October 2008 on BBC Four. The material was written and presented by University of Oxford professor Marcus du Sautoy. The consultants were the Open University academics Robin Wilson, professor Jeremy Gray and June Barrow-Green. Kim Duke is credited as series producer.
Eric Mark Friedlander is an American mathematician who is working in algebraic topology, algebraic geometry, algebraic K-theory and representation theory.
Jean-Benoît Bost is a French mathematician.
Bruce Reznick is an American mathematician long on the faculty at the University of Illinois at Urbana–Champaign. He is a prolific researcher noted for his contributions to number theory and the combinatorial-algebraic-analytic investigations of polynomials. In July 2019, to mark his 66th birthday, a day long symposium "Bruce Reznick 66 fest: A mensch of Combinatorial-Algebraic Mathematics" was held at the University of Bern, Switzerland.