Jay Keasling

Last updated
Jay Keasling
Dr. Jay D. Keasling - PopTech Energy Salon 2011 - NYC.jpg
Dr. Jay D. Keasling speaking at PopTech Energy Salon 2011 in New York City
Alma mater University of Nebraska-Lincoln
University of Michigan
Known for metabolic engineering
Awards Bill & Melinda Gates Foundation grant, Heinz Award in Technology, the Economy & Employment
Scientific career
Institutions University of California, Berkeley, University of Nebraska-Lincoln, University of Michigan
Thesis Dynamics and control of bacterial plasmid replication  (1991)
Doctoral advisor Bernhard Palsson [1]
Doctoral students Kristala Jones Prather
Other notable students Michelle C. Chang
Website keaslinglab.lbl.gov
twitter.com/jaykeasling

Jay D. Keasling is a professor[ ambiguous ] of chemical engineering and bioengineering at the University of California, Berkeley. [2] He is also associate laboratory director for biosciences at the Lawrence Berkeley National Laboratory and chief executive officer of the Joint BioEnergy Institute. [3] He is considered one of the foremost authorities in synthetic biology, especially in the field of metabolic engineering.

Contents

Keasling was elected a member of the National Academy of Engineering in 2010 for developing synthetic biology tools to engineer the antimalarial drug artemisinin.

Education

Keasling received his bachelor's degree at the University of Nebraska-Lincoln where he was a member of Delta Tau Delta International Fraternity. He went on to complete his Doctor of Philosophy degree at the University of Michigan in 1991 under the supervision of Bernhard Palsson. [4] Keasling performed post-doctoral research with Arthur Kornberg at Stanford University in 1991–1992.

Research

Keasling's current[ when? ] research [5] is focused on engineering chemistry inside microorganisms, an area known as metabolic engineering, for production of useful chemicals or for environmental cleanup. In much the same way that synthetic organic and industrial chemistry has allowed chemists and chemical engineers to produce from fossil fuel resources chemicals that we use every day, metabolic engineering can revolutionize the production of some of the same useful chemicals and more from renewable resources, like sugar and cellulosic biomass. For many years, work in metabolic engineering was limited by the lack of enzymes to perform the necessary chemistry and tools to manipulate and monitor the chemistry inside cells. Seeing a need for better genetic tools, Keasling began working on genetic tool development, an area now known as synthetic biology. Keasling’s laboratory has developed or adopted many of the latest analytical tools to troubleshoot our genetic manipulations. Keasling's laboratory has applied metabolic chemistry to a number of real-world problems including the production of the antimalarial drug artemisinin and drop-in biofuels. Keasling has published over 300 papers in peer-reviewed journals and has over 30 issued patents.

Artemisinin

Malaria is a global health problem that threatens 300–500 million people and kills more than one million people annually. The chloroquine-based drugs that were used widely in the past have lost effectiveness because the Plasmodium parasite that causes malaria has become resistant to them. Artemisinin, a sesquiterpene lactone endoperoxide, extracted from Artemisia annua L is highly effective against Plasmodium spp. resistant to other anti-malarial drugs. However, there are several problems with current production methods for artemisinin. First, artemisinin combination therapies (ACTs) are too expensive for people in the developing world to afford. [6] Second, artemisinin is extracted from A. annua, and its yield and consistency depend on climate and the extraction process. While there is a method for chemical synthesis of artemisinin, it is too low yielding and therefore too expensive for use in producing low-cost drugs. Third, although the World Health Organization has recommended that artemisinin be formulated with other active pharmaceutical ingredients in ACTs, many manufacturers are still producing mono-therapies of artemisinin, which increase the chance that Plasmodium spp. will develop resistance to artemisinin.

Keasling's laboratory at the University of California, Berkeley, has engineered both Escherichia coli and Saccharomyces cerevisiae to produce artemisinic acid, a precursor to artemisinin that can be derivatized using established, simple, inexpensive chemistry to form artemisinin or any artemisinin derivative currently used to treat malaria. [7] The microorganisms were engineered with a ten-enzyme biosynthetic pathway using genes from Artemisia annua, Saccharomyces cerevisiae, and Escherichia coli (twelve genes in all) to transform a simple and renewable sugar, like glucose, into the complicated chemical structure of the anti-malarial drug artemisinin. The engineered microorganism is capable of secreting the final product from the cell, thereby purifying it from all other intracellular chemicals and reducing the purification costs and therefore the cost of the final drug. Given the existence of known, relatively high-yielding chemistry for the conversion of artemisinic acid to artemisinin or any other artemisinin derivative, microbially-produced artemisinic acid is a viable, renewable, and scalable source of this potent family of anti-malarial drugs. [8]

A critical element of Keasling's work was the development of genetic tools to aid in the manipulation of microbial metabolism, particularly for low-value products that require high yields from sugar.His laboratory developed single-copy plasmids for the expression of complex metabolic pathways, promoter systems that allow regulated control of transcription consistently in all cells of a culture, mRNA stabilization technologies to regulate the stability of mRNA segments, [9] and a protein engineering approach to attach several enzymes of a metabolic pathway onto a synthetic protein scaffold to increase pathway flux. [10] These and other gene expression tools now enable precise control of the expression of the genes that encode novel metabolic pathways to maximize chemical production, to minimize losses to side products, and minimize the accumulation of toxic intermediates that may poison the microbial host, all of which are important for economical production of this important drug.

Another critical aspect of Keasling's work was discovering the chemistry and enzymes in Artemisia annua responsible for synthesis of artemisinin. [11] [12] These enzymes included the cytochrome P450 that oxidizes amorphadiene to artemisinic acid and the redox partners that transfer reducing equivalents from the enzyme to cofactors. The discovery of these enzymes and their functional expression in both yeast and E. coli, along with the other nine enzymes in the metabolic pathway, allowed production of artemisinic acid by these two microorganisms. [12] [13] S. cerevisiae was chosen for the large-scale production process and was further engineered to improve artemisinic acid production. [14]

Keasling's microbial production process has a number of advantages over extraction from plants. First, microbial synthesis will reduce the cost of artemisinin, the most expensive component of artemisinin-based combination therapies—by as much as tenfold—and therefore make artemisinin-derived anti-malarial drugs more affordable to people in the developing world. Second, weather conditions or political climates that might otherwise affect the yield or cost of the plant-derived version of the drug will not affect the microbial source for the drug. Third, microbial production of artemisinin in large tanks will allow for more careful distribution of artemisinin to legitimate drug manufacturers that formulate artemisinin combination therapies, rather than monotherapies. This will, in turn, slow the development of resistance to this drug. Fourth, severe shortages of plant-derived artemisinin are projected for 2011 and beyond, which will increase the cost of artemisinin combination therapies. Finally, microbially-derived artemisinic acid will enable production of new derivatives of artemisinin that Plasmodium may not be resistant to, thereby extending the time over which artemisinin may be used.

To ensure that the process he developed would benefit people in the developing world, Keasling assembled a unique team consisting of his laboratory at the University of California, Berkeley, Amyris Biotechnologies ( a company founded on this technology) and the Institute for OneWorld Health (a non-profit pharmaceutical company located in San Francisco). In addition to assembling the team, Keasling developed an intellectual property model to ensure that microbially-sourced artemisinin could be offered as inexpensively as possible to people in the developing world: patents granted from his work at UCB are licensed royalty free to Amyris Biotechnologies and the Institute for OneWorld Health for use in producing artemisinin so long as they do not make a profit on artemisinin sold in the developing world. The team was funded in December 2004 by the Bill & Melinda Gates Foundation to develop the microbial production process. The science was completed in December 2007. In 2008, Sanofi-Aventis licensed the technology and worked with Amyris to develop the production process. Sanofi-Aventis has produced 35 tons[ when? ] of artemisinin using Keasling’s microbial production process, which is enough for 70 million treatments. Distribution of artemisinin combination therapies containing the microbially-sourced artemisinin began in August 2014 with 1.7 million treatments shipped to Africa. It is anticipated that 100-150 million treatments will be produced using this technology and shipped annually to Africa, Asia and South America.

Biofuels

Renewable fuels are needed for all modes of transportation but most microbially-sourced fuels can be used only as a small fraction of gasoline in conventional spark-ignition engines. Keasling’s laboratory has engineered microorganisms to produce hydrocarbons with similar properties to the fuels now derived from petroleum. These fuels are synthesized from plant-derived sugars, such as cellulose feedstock, which is of little economic value. Consequently, microbes can minimize the carbon footprint by minimizing the energy expenditure in sourcing fuel, such off-shore drilling and hydraulic fracturing.

Keasling and his colleagues demonstrated that Escherichia coli and Saccharomyces cerevisiae can be engineered to produce the fatty acid-based biofuels fatty acid ethyl esters, [15] alkenes, [16] and methyl ketones. [17] As linear hydrocarbons are the key components of diesel, these biologically produced fuels are excellent diesel replacements. However, fuels containing only long, linear, hydrocarbon chains will freeze under cold conditions. To develop fuels suitable for cold applications, Keasling's laboratory engineered E. coli and S. cerevisiae to produce branched and cyclic hydrocarbons using the isoprenoid biosynthetic pathway: isopentanol, a drop-in replacement for gasoline; [18] pinene, a replacement for jet fuel; [19] and bisabolene, a replacement for diesel fuel. [20] Because isoprenoids add a methyl side chain every four carbons in the backbone, fuels made from isoprenoids have very low freeze and cloud points, making them suitable as cold-weather diesels and jet fuels.

One of the biggest challenges in scaling up microbial fermentations is the stability of the microbial strain: the engineered microorganism will attempt to mutate or shed the metabolic pathway, in part because intermediates in the metabolic pathway accumulate and are toxic to the cells. To balance pathway flux and reduce the cost of producing a desired biofuel, Keasling's laboratory developed dynamic regulators to sense the levels of intermediates in the pathway and regulate pathway activity. [21] These regulators stabilized the pathway and the cell and improved biofuel yields making it possible to grow the engineered cells in large-scale fermentation tanks for fuel production.

Many of the best fuels and chemicals are toxic to the producer organism. One way to limit fuel toxicity is to actively pump the fuel from the cell. To identify pumps ideally suited for a particular fuel, Keasling and his colleagues bioprospected environmental microorganisms for many, different, three-component transporters and selected for the pumps most effective for a particular fuel. [22] These transporters allowed E. coli to grow in the presence of the fuels and, as a result, produce more of the target fuel than it would have been able to do so in the absence of the transporter.

The starting materials (generally sugars) are the most significant factor in the biofuel production cost. Cellulose, a potentially low-cost starting material, must be depolymerized into sugars by adding an expensive cocktail of enzymes. One way to reduce this cost is to engineer the fuel-producing microbe to also produce the enzymes to depolymerize cellulose and hemicellulose. Recently, Keasling's laboratory demonstrated that a microorganism could be engineered to synthesize and secrete enzymes to depolymerize cellulose and hemicellulose into sugars and to produce a gasoline replacement (butanol), a diesel-fuel replacement (fatty acid ethyl ester), or a jet fuel replacement (pinene). [23]

As a technological platform, biofuel manufacturing faces huge economic hurdles many of which depend on the market pricing of crude oil and other conventionally sourced fuels. Nonetheless, metabolic engineering is a technology that is becoming increasingly competitive and is expected to have wide-reaching effects by 2020.

Awards

Companies

Keasling is a founder of Amyris (with Vincent Martin, Jack Newman, Neil Renninger and Kinkead Reiling), LS9 (now part of REG with George Church and Chris Sommerville), and Lygos (with Leonard Katz, Clem Fortman, Jeffrey Dietrich and Eric Steen).

Personal life

Keasling is originally from Harvard, Nebraska, and is openly gay. [28]

See also

Related Research Articles

<span class="mw-page-title-main">Biochemical engineering</span> Manufacturing by chemical reactions of biological organisms

Biochemical engineering, also known as bioprocess engineering, is a field of study with roots stemming from chemical engineering and biological engineering. It mainly deals with the design, construction, and advancement of unit processes that involve biological organisms or organic molecules and has various applications in areas of interest such as biofuels, food, pharmaceuticals, biotechnology, and water treatment processes. The role of a biochemical engineer is to take findings developed by biologists and chemists in a laboratory and translate that to a large-scale manufacturing process.

Cellulosic ethanol is ethanol produced from cellulose rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a biofuel. The carbon dioxide that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is burned, so cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels.

<span class="mw-page-title-main">Metabolic engineering</span>

Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the cell's production of a certain substance. These processes are chemical networks that use a series of biochemical reactions and enzymes that allow cells to convert raw materials into molecules necessary for the cell's survival. Metabolic engineering specifically seeks to mathematically model these networks, calculate a yield of useful products, and pin point parts of the network that constrain the production of these products. Genetic engineering techniques can then be used to modify the network in order to relieve these constraints. Once again this modified network can be modeled to calculate the new product yield.

<i>Clostridium acetobutylicum</i> Species of bacterium

Clostridium acetobutylicum, ATCC 824, is a commercially valuable bacterium sometimes called the "Weizmann Organism", after Jewish Russian-born biochemist Chaim Weizmann. A senior lecturer at the University of Manchester, England, he used them in 1916 as a bio-chemical tool to produce at the same time, jointly, acetone, ethanol, and n-butanol from starch. The method has been described since as the ABE process,, yielding 3 parts of acetone, 6 of n-butanol, and 1 of ethanol. Acetone was used in the important wartime task of casting cordite. The alcohols were used to produce vehicle fuels and synthetic rubber.

The word metagenics uses the prefix meta and the suffix gen. Literally, it means "the creation of something which creates". In the context of biotechnology, metagenics is the practice of engineering organisms to create a specific enzyme, protein, or other biochemicals from simpler starting materials. The genetic engineering of E. coli with the specific task of producing human insulin from starting amino acids is an example. E. coli has also been engineered to digest plant biomass and use it to produce hydrocarbons in order to synthesize biofuels. The applications of metagenics on E. coli also include higher alcohols, fatty-acid based chemicals and terpenes.

Industrial fermentation is the intentional use of fermentation in manufacturing processes. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. Moreover, nearly all commercially produced industrial enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as is the case for single-cell proteins, baker's yeast, and starter cultures for lactic acid bacteria used in cheesemaking.

<span class="mw-page-title-main">Mixed acid fermentation</span> Biochemical conversion of six-carbon sugars into acids in bacteria

In biochemistry, mixed acid fermentation is the metabolic process by which a six-carbon sugar is converted into a complex and variable mixture of acids. It is an anaerobic (non-oxygen-requiring) fermentation reaction that is common in bacteria. It is characteristic for members of the Enterobacteriaceae, a large family of Gram-negative bacteria that includes E. coli.

<span class="mw-page-title-main">Butanol fuel</span> Fuel for internal combustion engines

Butanol may be used as a fuel in an internal combustion engine. It is more similar to gasoline than it is to ethanol. A C4-hydrocarbon, butanol is a drop-in fuel and thus works in vehicles designed for use with gasoline without modification. Both n-butanol and isobutanol have been studied as possible fuels. Both can be produced from biomass (as "biobutanol" ) as well as from fossil fuels (as "petrobutanol"). The chemical properties depend on the isomer (n-butanol or isobutanol), not on the production method.

The non-mevalonate pathway—also appearing as the mevalonate-independent pathway and the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathway—is an alternative metabolic pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The currently preferred name for this pathway is the MEP pathway, since MEP is the first committed metabolite on the route to IPP.

Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.

The enzyme amorpha-4,11-diene synthase (ADS) catalyzes the chemical reaction

LS-9 Inc was a venture-funded company focused on producing diesel fuel from transgenic organisms. It launched in 2005, took in $81 million in investment, and in 2013 was sold to Renewable Energy Group for $40 million in cash and stock, and an additional $21.5 million if technology and production milestones were met.

<span class="mw-page-title-main">Frances Arnold</span> American chemist, Nobel laureate (born 1956)

Frances Hamilton Arnold is an American chemical engineer and Nobel Laureate. She is the Linus Pauling Professor of Chemical Engineering, Bioengineering and Biochemistry at the California Institute of Technology (Caltech). In 2018, she was awarded the Nobel Prize in Chemistry for pioneering the use of directed evolution to engineer enzymes.

Michelle C. Y. Chang is a Professor of Chemistry and Chemical and Biomolecular Engineering at the University of California, Berkeley, and is a recipient of several young scientist awards for her research in biosynthesis of biofuels and pharmaceuticals.

<span class="mw-page-title-main">Synthetic biological circuit</span>

Synthetic biological circuits are an application of synthetic biology where biological parts inside a cell are designed to perform logical functions mimicking those observed in electronic circuits. The applications range from simply inducing production to adding a measurable element, like GFP, to an existing natural biological circuit, to implementing completely new systems of many parts.

<span class="mw-page-title-main">Jens Nielsen</span> Danish biologist

Jens Nielsen is the CEO of BioInnovation Institute, Copenhagen, Denmark, and professor of systems biology at Chalmers University of Technology, Gothenburg, Sweden. He is also an adjunct professor at the Technical University of Denmark. Nielsen is the most cited researcher in the field of metabolic engineering, and he is the founding president of the International Metabolic Engineering Society. He has additionally founded several biotech companies.

<span class="mw-page-title-main">James C. Liao</span>

James C. Liao is the Parsons Foundation Professor and Chair of the Department of Chemical and Biomolecular Engineering at the University of California, Los Angeles and is the co-founder and lead scientific advisor of Easel Biotechnologies, LLC.

<span class="mw-page-title-main">Microbial cell factory</span>

Microbial cell factory is an approach to bioengineering which considers microbial cells as a production facility in which the optimization process largely depends on metabolic engineering. MCFs is a derivation of cell factories, which are engineered microbes and plant cells. In 1980s and 1990s, MCFs were originally conceived to improve productivity of cellular systems and metabolite yields through strain engineering. A MCF develops native and nonnative metabolites through targeted strain design. In addition, MCFs can shorten the synthesis cycle while reducing the difficulty of product separation.

Formatotrophs are organisms that can assimilate formate or formic acid to use as a carbon source or for reducing power. Some authors classify formatotrophs as one of the five trophic groups of methanogens, which also include hydrogenotrophs, acetotrophs, methylotrophs, and alcoholotrophs. Formatotrophs have garnered attention for applications in biotechnology as part of a "formate bioeconomy" in which synthesized formate could be used as a nutrient for microoganisms. Formate can be electrochemically synthesized from CO2 and renewable energy, and formatotrophs may be genetically modified to enhance production of biochemical products to be used as biofuels. Technical limitations in culturing formatotrophs have limited the discovery of natural formatotrophs and impeded research on their formate-metabolizing enzymes, which are of interest for applications in carbon sequestration and astrobiology.

Aindrila Mukhopadhyay is an American scientist who is the Division Deputy of the Biological Systems and Engineering Division at Lawrence Berkeley National Laboratory. Her research involves microbial engineering for the production of biofuels. She was nominated a Fellow of the American Association for the Advancement of Science in 2022.

References

  1. Palsson laboratory alumni. Gcrg.ucsd.edu. Retrieved 22 May 2012. [ dead link ]
    - Palsson, B. O.; Keasling, J. D.; Emerson, S. G. (1990). "The regulatory mechanisms of human immunodeficiency virus replication predict multiple expression rates". Proceedings of the National Academy of Sciences of the United States of America. 87 (2): 772–776. Bibcode:1990PNAS...87..772P. doi: 10.1073/pnas.87.2.772 . PMC   53348 . PMID   2405389.
  2. Jay D. Keasling faculty page, UC Berkeley. Retrieved 22 May 2012.
    - The Keasling Lab web site
  3. "About", Joint BioEnergy Institute
  4. Keasling, Jay D. (1981). Dynamics and control of bacterial plasmid replication (PhD thesis). University of Michigan. ProQuest   304026675.
  5. Jay Keasling in Google Scholar. Retrieved 22 May 2012.
  6. Specter, Michael (2009). Denialsim How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives . Penguin Group. p.  229. ISBN   978-1-59420-230-8.
  7. Ro, D. K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J.; Chang, M. C. Y.; Withers, S. T.; Shiba, Y.; Sarpong, R.; Keasling, J. D. (2006). "Production of the antimalarial drug precursor artemisinic acid in engineered yeast". Nature. 440 (7086): 940–943. Bibcode:2006Natur.440..940R. doi:10.1038/nature04640. PMID   16612385. S2CID   3199654.
    - Martin, V. J. J.; Pitera, D. J.; Withers, S. T.; Newman, J. D.; Keasling, J. D. (2003). "Engineering a mevalonate pathway in Escherichia coli for production of terpenoids". Nature Biotechnology. 21 (7): 796–802. doi:10.1038/nbt833. PMID   12778056. S2CID   17214504.
  8. "An Age-Old Microbe May Hold the Key to Curing an Age-Old Affliction" Archived 2006-11-06 at the Wayback Machine , Science@Berkeley Lab, 30 May 2006
  9. Carothers et al. (2011), Science 334:1716
  10. Dueber et al. (2009), Nat. Biotechnol., 27:753
  11. Martin et al. (2003), Nat. Biotechnol., 21:796
  12. 1 2 Ro et al. (2006), Nature, 440:940
  13. Chang et al. (2007). Nat. Chem. Biol., 3:274
  14. Paddon et al. (2013), Nature, 496:528
    - Paddon and Keasling (2014), Nat. Rev. Microbiol., 12:355
  15. Steen (2010), Nature, 463:559; Runguphan (2013), Met Eng
  16. Beller (2010), Appl Environ Microbiol, 76:1212
  17. Goh (2012), Appl Environ Microbiol, 78:70
  18. Chou (2012), Appl Env Microbiol, 78:7829
  19. Bokinsky (2011), Proc. Natl. Acad. Sci. USA, 108:19949
  20. Peralta-Yahya (2010), Nat. Commun., 2:483
  21. Zhang (2012), Nat Biotechnol, 30:354
    - Dahl (2013), Nat Biotechnol, 31:1039
    - Chou (2013), Nat Commun, 4:2595
  22. Dunlop (2011), Mol Sys Biol, 7:487
  23. Bokinsky (2011), Proc Natl Acad Sci, 108:19949
  24. Carl Zimmer, "Scientist of the Year: Jay Keasling", Discover, 22 November 2006 Archived 29 August 2008 at the Wayback Machine
  25. "Jay Keasling Receives Inaugural Biotech Humanitarian Award", Biotechnology Industry Organization, 20 May 20 2009
  26. "2010 Recognition Awards to Keasling, Bering, and Riley". NOGLSTP. Retrieved 20 February 2019.
  27. "The Heinz Awards: Jay Keasling". The Heinz Awards. Retrieved 24 August 2016.
  28. Shukla, Shipra (2 March 2009). "LGBT Scientists Hear About Coming Out on the Job". UCSF. Retrieved 22 May 2012.
    - "What's the Next Big Thing?". PBS. Retrieved 22 May 2012.