Jewelry wire

Last updated
A collection of jewelers wires Jewelers wire collection.jpg
A collection of jewelers wires

Jewelry wire is wire, usually copper, brass, nickel, aluminium, silver, or gold, used in jewelry making.

Contents

Wire is defined today as a single, usually cylindrical, elongated strand of drawn metal. However, when wire was first invented over 2,000 years BC, it was made from gold nuggets pounded into flat sheets, which were then cut into strips. The strips were twisted and then rolled into the round shape we call wire. This early wire, which was used in making jewelry, can be distinguished from modern wire by the spiral line along the wire created by the edges of the sheet.

Modern wire is manufactured in a different process that was discovered in Ancient Rome. In this process, a solid metal cylinder is pulled through a draw plate with holes of a defined size. Thinner sizes of wire are made by pulling wire through successively smaller holes in the draw plate until the desired size is reached.

When wire was first invented, its use was limited to making jewelry. Today, wire is used extensively in many applications including fencing, the electronics industry, electrical distribution, and the making of wire wrapped jewelry.

Wire hardness

All metals have a property called hardness, which is the property of the metal that resists bending. Soft metals are pliable and easy to bend while hard metals are stiff and hard to bend. The hardness of metals can be changed by annealing with heat treatment, or by work hardening a wire by bending it.

Most modern manufacturers of jewelry wire make the wire with a defined hardness, generally a hardness of 0, 1, 2, 3, or 4. Historically, these numbers were associated with the number of times that the wire was pulled through a draw plate, becoming harder or stiffer each time it was drawn through the drawplate. A hardness of 0 meant that the wire had been drawn through only once and was as soft and as pliable as possible. A hardness of 4 meant that the wire had been drawn through five or more times and the wire was as stiff and as hard as possible. Most jewelry wire that is sold now is designated dead soft, half-hard, or hard, where dead soft is wire that is manufactured with a hardness of 0, half-hard is wire manufactured with a hardness of 2, and fully hardened wire is wire with a hardness of 4.

Boxes of jewellery wire. The left hand box has gold-plated, silver-plated and copper wire. The right hand box has reels of silver-plated wire at the top and reels of coloured copper wire at the bottom. Boxes of jewellery wire arp.jpg
Boxes of jewellery wire. The left hand box has gold-plated, silver-plated and copper wire. The right hand box has reels of silver-plated wire at the top and reels of coloured copper wire at the bottom.

Dead soft wire is extremely soft and pliable. It can be easily bent and is excellent for making rounded shapes such as spirals. It is also excellent for wrapping wire around beads to make them look as though they are encased. The disadvantage of using soft wire is that the finished piece can be bent out of shape if not properly handled.

Half-hard wire is slightly stiffer than dead soft wire. Half-hard wire is excellent for making tight, angular bends, for making loops in wire, and for wrapping wire around itself. However, it is not very useful for making spirals. Finished pieces made with half-hard wire are usually more permanent than pieces made with soft wire.

Hard wire is very stiff and tends to spring back after being bent, making it harder to work with when using a jig; it cannot be used to make a spiral. Pieces made with hard wire have the advantage that they are not easily accidentally deformed.

As in many things, no single wire is perfect for all applications. Soft wire is easy to bend and shape, but the finished product may be bent out of shape if squeezed. Hard wire is difficult to bend but makes permanent shapes. Half-hard wire is a compromise between the two. Wire-wrapped jewelry can be made by wire which is initially soft, simplifying fabrication, but later hardened by hammering or by work hardening.

Wire shape

Iron Age gold wire from 'Gayton Area', Norfolk Treasure case 2005 T544, Iron Age gold wire from 'Gayton Area', Norfolk (FindID 205262).jpg
Iron Age gold wire from 'Gayton Area', Norfolk

Historically, all wire was round. Advances in technology now allow the manufacture of jewelry wire with different cross-sectional shapes, including circular, square, and half-round. Half round wire is often wrapped around other pieces of wire to connect them. Square wire is used for its appearance: the corners of the square add interest to the finished jewelry. Square wire can be twisted to create interesting visual effects.

Wire size

Cabochon decorated with silver-plated wire spirals Cabochon with wire spirals arp.jpg
Cabochon decorated with silver-plated wire spirals

For jewelry applications, gauges 12–28 are most common. The size of wire is defined by one of two measuring systems. The American wire gauge (AWG) and the Standard wire gauge (SWG) systems. AWG is usually, but not always the standard for defining the sizes of wire used in the United States, and SWG is usually, but not always the standard wire sizing system used in the United Kingdom. With both the AWG and SWG systems, the larger the number, the smaller the gauge. For example: 2-gauge wire is large (like a pencil) and 30-gauge wire is fine, like thread. In much of the world wire diameter is often expressed in millimeters.

For making jump rings, 10- to 18-gauge wire (2.5 to 1.3 mm) is used. Bracelet and necklace wire components are generally made out of wire that is 16-, 18- or 20-gauge (1.3 to 0.8 mm). Earring wires are usually made out of 18- or 20-gauge wire (1.0 to 0.8 mm). When making wire wrapped jewelry, these components are connected to one another with wire that is generally 20- to 26-gauge (0.8 to 0.4 mm). Frequently the connections between wire components will include a bead on the wire connector in a technique called a wire-wrapped loop. Most glass beads (but not all) are manufactured with a hole that is 1 mm in size. This will accommodate 20-gauge wire, but will probably not accommodate 18-gauge wire. Some glass beads, almost all freshwater pearls and some gemstone beads will have smaller holes and will require the use of wire thinner than 20-gauge. (The largest wire that can go through the beads is generally chosen. Beads and gemstones are much harder than the wire, and will over time saw into the wire; so thicker wire will last longer.)

Thick wire, of 16-gauge and heavier, is harder to bend and requires more expert handling. Hammering wire with a plastic or rawhide mallet will harden wire without changing its shape. Hammering wire with a metal jeweler's hammer (chasing hammer) will harden and flatten wire.

For thickness of body jewelry sizes, gauges of all sizes can be found, notably with stretching.

See also

Related Research Articles

<span class="mw-page-title-main">Forge</span> Workshops of blacksmith, who is an ironsmith who makes iron into tools or other objects

A forge is a type of hearth used for heating metals, or the workplace (smithy) where such a hearth is located. The forge is used by the smith to heat a piece of metal to a temperature at which it becomes easier to shape by forging, or to the point at which work hardening no longer occurs. The metal is transported to and from the forge using tongs, which are also used to hold the workpiece on the smithy's anvil while the smith works it with a hammer. Sometimes, such as when hardening steel or cooling the work so that it may be handled with bare hands, the workpiece is transported to the slack tub, which rapidly cools the workpiece in a large body of water. However, depending on the metal type, it may require an oil quench or a salt brine instead; many metals require more than plain water hardening. The slack tub also provides water to control the fire in the forge.

<span class="mw-page-title-main">Wire</span> Single, usually cylindrical, flexible strand or bar or rod of metal

A wire is a flexible, round, bar of metal. Wires are commonly formed by drawing the metal through a hole in a die or draw plate. Wire gauges come in various standard sizes, as expressed in terms of a gauge number or cross-sectional area.

<span class="mw-page-title-main">Blacksmith</span> Person who creates wrought iron or steel products by forging, hammering, bending, and cutting

A blacksmith is a metalsmith who creates objects primarily from wrought iron or steel, but sometimes from other metals, by forging the metal, using tools to hammer, bend, and cut. Blacksmiths produce objects such as gates, grilles, railings, light fixtures, furniture, sculpture, tools, agricultural implements, decorative and religious items, cooking utensils, and weapons. There was a historical distinction between the heavy work of the blacksmith and the more delicate operations of a whitesmith, who usually worked in gold, silver, pewter, or the finishing steps of fine steel. The place where a blacksmith works is variously called a smithy, a forge, or a blacksmith's shop.

<span class="mw-page-title-main">Differential heat treatment</span> Technique used in heat treating

Differential heat treatment is a technique used during heat treating of steel to harden or soften certain areas of an object, creating a difference in hardness between these areas. There are many techniques for creating a difference in properties, but most can be defined as either differential hardening or differential tempering. These were common heat treatment techniques used historically in Europe and Asia, with possibly the most widely known example being from Japanese swordsmithing. Some modern varieties were developed in the twentieth century as metallurgical knowledge and technology rapidly increased.

American Wire Gauge (AWG) is a logarithmic stepped standardized wire gauge system used since 1857, predominantly in North America, for the diameters of round, solid, nonferrous, electrically conducting wire. Dimensions of the wires are given in ASTM standard B 258. The cross-sectional area of each gauge is an important factor for determining its current-carrying capacity.

<span class="mw-page-title-main">Blade</span> Sharp cutting part of a weapon or tool

A blade is the sharp, cutting portion of a tool, weapon, or machine, specifically designed to puncture, chop, slice, or scrape surfaces or materials. Blades are typically made from materials that are harder than those they are intended to cut. This includes early examples made from flaked stones like flint or obsidian, evolving through the ages into metal forms like copper, bronze, and iron, and culminating in modern versions made from steel or ceramics. Serving as one of humanity's oldest tools, blades continue to have wide-ranging applications, including in combat, cooking, and various other everyday and specialized tasks.

<span class="mw-page-title-main">Coil spring</span> Mechanical device that stores energy

A coil spring is a mechanical device that is typically used to store energy and subsequently release it, to absorb shock, or to maintain a force between contacting surfaces. They are made of an elastic material formed into the shape of a helix that returns to its natural length when unloaded.

Rawhide is a hide or animal skin that has not been exposed to tanning. It is similar to parchment, much lighter in color than leather made by traditional vegetable tanning.

<span class="mw-page-title-main">Barbell (piercing)</span> Type of piercing

Barbell style piercing jewelry is composed of a straight bar with a bead on each end, one or both beads unscrewable for removal and/or changing of the beads. Often one of the beads is fixed, either via epoxy or welding, so that only one bead is used to install or remove the jewelry. Barbell threads are usually right-handed.

<span class="mw-page-title-main">Tempering (metallurgy)</span> Process of heat treating used to increase the toughness of iron-based alloys

Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.

<span class="mw-page-title-main">Shot peening</span> Cold metal working process to produce compressive residual stress

Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot with force sufficient to create plastic deformation.

<span class="mw-page-title-main">IEC 60228</span> Standard for conductors of insulated cables

IEC 60228 is the International Electrotechnical Commission (IEC)'s international standard on conductors of insulated cables. As of 2023 the current version is Third Edition 2004-11 Among other things, it defines a set of standard wire cross-sectional areas:

<span class="mw-page-title-main">Wire gauge</span> Measurement of wire diameter

Wire gauge is a measurement of wire diameter. This determines the amount of electric current the wire can safely carry, as well as its electrical resistance and weight.

In materials science, hardness is a measure of the resistance to localized plastic deformation, such as an indentation or a scratch (linear), induced mechanically either by pressing or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.

<span class="mw-page-title-main">Japanese swordsmithing</span> Process of forging bladed weapons

Japanese swordsmithing is the labour-intensive bladesmithing process developed in Japan beginning in the sixth century for forging traditionally made bladed weapons (nihonto) including katana, wakizashi, tantō, yari, naginata, nagamaki, tachi, nodachi, ōdachi, kodachi, and ya (arrow).

<span class="mw-page-title-main">Stonesetting</span>

Stonesetting is the art of securely setting or attaching gemstones into jewelry.

<span class="mw-page-title-main">Wire wrapped jewelry</span> Technique for making jewelry

Wire wrapping is one of the oldest techniques for making handmade jewelry. This technique is done with jewelry wire and findings similar to wire to make components. Wire components are then connected to one another using mechanical techniques with no soldering or heating of the wire. Frequently, in this approach, a wire is bent into a loop or other decorative shape and then the wire is wrapped around itself to finish the wire component. This makes the loop or decorative shape permanent. The technique of wrapping wire around itself gives this craft its name of wire wrapping.

<span class="mw-page-title-main">Standard wire gauge</span> Imperial unit for wire diameters, as defined in British Standard 3737

British Standard Wire Gauge is a unit for denoting wire size given by BS 3737:1964. It is also known as the Imperial Wire Gauge or British Standard Gauge. Use of SWG sizes has fallen greatly in popularity, but they are still used as a measure of thickness in guitar strings and some electrical wire. Cross sectional area in square millimetres is now the more usual size measurement for wires used in electrical installation cables. The current British Standard for metallic materials such as wire and sheet is BS 6722:1986, which is a solely metric standard.

<span class="mw-page-title-main">Steam bending</span> Woodworking technique

Steam bending is a woodworking technique where wood is exposed to steam to make it pliable. Heat and moisture from steam can soften wood fibres enough so they can be bent and stretched, and when cooled down they will hold their new shape.

Body jewelry sizes express the thickness of an item of body jewelry, using one of several possible systems.

References