John Barrett (energy researcher)

Last updated

John Richard Barrett OBE is a British academic who is chair in Energy and Climate Policy at the University of Leeds. He is the Director of the Centre for Industrial Energy, Materials and Products (CIE-MAP) (one of six End Use Energy Demand Centres) and co-director of the UK Energy Research Centre.

Contents

Policy and media work

Barrett was a lead advisor to Defra in relation to the development of Publicly Available Standard 2050 (PAS2050)1. [1] of goods and services. Barrett was commissioned by Defra to lead on understanding the carbon footprint of trade. [2]

Barrett was selected as a lead author [3] for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment for Working Group III and has appeared regularly on BBC Radio 4 [4] [5] news and discussion programmes and written numerous policy reports on sustainable consumption policy issues for a wide range of audiences. [6] [7]

Barrett was appointed Officer of the Order of the British Empire (OBE) in the 2022 Birthday Honours for services to climate change assessment. [8]

Related Research Articles

<span class="mw-page-title-main">Kyoto Protocol</span> 1997 international treaty to reduce greenhouse gas emissions

The Kyoto Protocol (Japanese: 京都議定書, Hepburn: Kyōto Giteisho) was an international treaty which extended the 1992 United Nations Framework Convention on Climate Change (UNFCCC) that commits state parties to reduce greenhouse gas emissions, based on the scientific consensus that global warming is occurring and that human-made CO2 emissions are driving it. The Kyoto Protocol was adopted in Kyoto, Japan, on 11 December 1997 and entered into force on 16 February 2005. There were 192 parties (Canada withdrew from the protocol, effective December 2012) to the Protocol in 2020.

<span class="mw-page-title-main">Carbon tax</span> Tax on carbon emissions

A carbon tax is a tax levied on the carbon emissions required to produce goods and services. Carbon taxes are intended to make visible the "hidden" social costs of carbon emissions, which are otherwise felt only in indirect ways like more severe weather events. In this way, they are designed to reduce greenhouse gas emissions by increasing prices of the fossil fuels that emit them when burned. This both decreases demand for goods and services that produce high emissions and incentivizes making them less carbon-intensive. In its simplest form, a carbon tax covers only CO2 emissions; however, it could also cover other greenhouse gases, such as methane or nitrous oxide, by taxing such emissions based on their CO2-equivalent global warming potential. When a hydrocarbon fuel such as coal, petroleum, or natural gas is burned, most or all of its carbon is converted to CO
2
. Greenhouse gas emissions cause climate change, which damages the environment and human health. This negative externality can be reduced by taxing carbon content at any point in the product cycle. Carbon taxes are thus a type of Pigovian tax.

Carbon neutrality is an approach for climate change mitigation in which carbon dioxide emissions (or all greenhouse gas emissions) are balanced by absorbing carbon via carbon sinks or by removals. This can be achieved by reducing emissions, most of which come from the burning of fossil fuels, and by removing carbon dioxide from the atmosphere. The term is used in the context of carbon dioxide-releasing processes associated with transport, energy production, agriculture, and industry. Although the term "carbon neutral" is used, the approach also includes other greenhouse gases, measured in terms of their carbon dioxide equivalence. The term climate-neutral reflects the broader inclusiveness of other greenhouse gases in climate change, even if CO2 is the most abundant.

<span class="mw-page-title-main">Special Report on Emissions Scenarios</span> 2000 report by the Intergovernmental Panel on Climate Change

The Special Report on Emissions Scenarios (SRES) is a report by the Intergovernmental Panel on Climate Change (IPCC) that was published in 2000. The greenhouse gas emissions scenarios described in the Report have been used to make projections of possible future climate change. The SRES scenarios, as they are often called, were used in the IPCC Third Assessment Report (TAR), published in 2001, and in the IPCC Fourth Assessment Report (AR4), published in 2007. The SRES scenarios were designed to improve upon some aspects of the IS92 scenarios, which had been used in the earlier IPCC Second Assessment Report of 1995. The SRES scenarios are "baseline" scenarios, which means that they do not take into account any current or future measures to limit greenhouse gas (GHG) emissions.

<span class="mw-page-title-main">Climate change mitigation</span> Actions to reduce net greenhouse gas emissions to limit climate change

Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. Mitigation can reduce emissions by transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide from the atmosphere by enlarging forests, restoring wetlands and using other natural and technical processes. Experts call these processes carbon sequestration. Governments and companies have pledged to reduce emissions to prevent dangerous climate change in line with international negotiations to limit warming by reducing emissions.

<span class="mw-page-title-main">Carbon footprint</span> Concept to quantify greenhouse gas emissions from activities or products

The carbon footprint (or greenhouse gas footprint) serves as an indicator to compare the total amount of greenhouse gases emitted from an activity, product, company or country. Carbon footprints are usually reported in tons of emissions (CO2-equivalent) per unit of comparison; such as per year, person, kg protein, km travelled and alike. For a product, its carbon footprint includes the emissions for the entire life cycle from the production along the supply chain to its final consumption and disposal. Similarly for an organization, its carbon footprint includes the direct as well as the indirect emissions caused by the organization (called Scope 1, 2 and 3 in the Greenhouse Gas Protocol that is used for carbon accounting of organizations). Several methodologies and online tools exist to calculate the carbon footprint, depending on whether the focus is on a country, organization, product or individual person. For example, the carbon footprint of a product could help consumers decide which product to buy if they want to be climate aware. In the context of climate change mitigation activities, the carbon footprint can help distinguish those economic activities with a high footprint from those with a low footprint. In other words, the carbon footprint concept allows everyone to make comparisons between the climate-relevant impacts of individuals, products, companies, countries. In doing so, it helps to devise strategies and priorities for reducing the carbon footprint.

The economic analysis of climate change explains how economic thinking, tools and techniques are applied to calculate the magnitude and distribution of damage caused by climate change. It also informs the policies and approaches for mitigation and adaptation to climate change from global to household scales. This topic is also inclusive of alternative economic approaches, including ecological economics and degrowth.

Carbon rationing, as a means of reducing CO2 emissions to contain climate change, could take any of several forms. One of them, personal carbon trading, is the generic term for a number of proposed emissions trading schemes under which emissions credits would be allocated to adult individuals on a (broadly) equal per capita basis, within national carbon budgets. Individuals then surrender these credits when buying fuel or electricity. Individuals wanting or needing to emit at a level above that permitted by their initial allocation would be able to purchase additional credits in the personal carbon market from those using less, creating a profit for those individuals who emit at a level below that permitted by their initial allocation.

<span class="mw-page-title-main">Environmental effects of aviation</span> Effect of emissions from aircraft engines

Aircraft engines produce gases, noise, and particulates from fossil fuel combustion, raising environmental concerns over their global effects and their effects on local air quality. Jet airliners contribute to climate change by emitting carbon dioxide, the best understood greenhouse gas, and, with less scientific understanding, nitrogen oxides, contrails and particulates. Their radiative forcing is estimated at 1.3–1.4 that of CO2 alone, excluding induced cirrus cloud with a very low level of scientific understanding. In 2018, global commercial operations generated 2.4% of all CO2 emissions.

<span class="mw-page-title-main">Biomass (energy)</span> Biological material used as a renewable energy source

Biomass, in the context of energy production, is matter from recently living organisms which is used for bioenergy production. Examples include wood, wood residues, energy crops, agricultural residues including straw, and organic waste from industry and households. Wood and wood residues is the largest biomass energy source today. Wood can be used as a fuel directly or processed into pellet fuel or other forms of fuels. Other plants can also be used as fuel, for instance maize, switchgrass, miscanthus and bamboo. The main waste feedstocks are wood waste, agricultural waste, municipal solid waste, and manufacturing waste. Upgrading raw biomass to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical.

<span class="mw-page-title-main">Greenhouse gas emissions</span> Sources and amounts of greenhouse gases emitted to the atmosphere from human activities

Greenhouse gas emissions from human activities strengthen the greenhouse effect, contributing to climate change. Most is carbon dioxide from burning fossil fuels: coal, oil, and natural gas. The largest emitters include coal in China and large oil and gas companies. Human-caused emissions have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2017 were 425±20 GtC from fossil fuels and industry, and 180±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2017, coal 32%, oil 25%, and gas 10%.

<span class="mw-page-title-main">Climate Change Act 2008</span> United Kingdom legislation

The Climate Change Act 2008 is an Act of the Parliament of the United Kingdom. The Act makes it the duty of the Secretary of State to ensure that the net UK carbon account for all six Kyoto greenhouse gases for the year 2050 is at least 100% lower than the 1990 baseline, toward avoiding dangerous climate change. The Act aims to enable the United Kingdom to become a low-carbon economy and gives ministers powers to introduce the measures necessary to achieve a range of greenhouse gas reduction targets. An independent Committee on Climate Change was created under the Act to provide advice to UK Government on these targets and related policies. In the act Secretary of State refers to the Secretary of State for Energy and Climate Change.

The Climate Change Committee (CCC), originally named the Committee on Climate Change, is an independent non-departmental public body, formed under the Climate Change Act (2008) to advise the United Kingdom and devolved Governments and Parliaments on tackling and preparing for climate change. The Committee provides advice on setting carbon budgets, and reports regularly to the Parliaments and Assemblies on the progress made in reducing greenhouse gas emissions. Notably, in 2019 the CCC recommended the adoption of a target of net zero greenhouse gas emissions by the United Kingdom by 2050. On 27 June 2019 the British Parliament amended the Climate Change Act (2008) to include a commitment to net zero emissions by 2050. The CCC also advises and comments on the UK's progress on Climate change adaptation through updates to Parliament.

In 2005, an international conference titled Avoiding Dangerous Climate Change: A Scientific Symposium on Stabilisation of Greenhouse Gases examined the link between atmospheric greenhouse gas concentration and global warming and its effects. The conference name was derived from Article 2 of the charter for the United Nations Framework Convention on Climate Change The conference explored the possible impacts at different levels of greenhouse gas emissions and how the climate might be stabilized at a desired level. The conference took place under the United Kingdom's presidency of the G8, with the participation of around 200 "internationally renowned" scientists from 30 countries. It was chaired by Dennis Tirpak and hosted by the Hadley Centre for Climate Prediction and Research in Exeter, from 1 February to 3 February. The conference was one of many meetings leading up to the 2015 Paris Agreement, at which the international community agreed to limit global warming to no more than 2 °C in order to have a 50-50 chance of avoiding dangerous climate change. However, a 2018 published study points at a threshold at which temperatures could rise to 4 or 5 degrees through self-reinforcing feedbacks in the climate system, suggesting the threshold is below the 2 degree temperature target.

Carbon leakage a concept to quantify an increase in greenhouse gas emissions in one country as a result of an emissions reduction by a second country with stricter climate change mitigation policies. Carbon leakage is one type of spill-over effect. Spill-over effects can be positive or negative; for example, emission reductions policy might lead to technological developments that aid reductions outside of the policy area. Carbon leakage is defined as "the increase in CO2 emissions outside the countries taking domestic mitigation action divided by the reduction in the emissions of these countries." It is expressed as a percentage, and can be greater or less than 100%. There is no consensus over the magnitude of long-term leakage effects.

<span class="mw-page-title-main">Kevin Anderson (scientist)</span> British scientist and climate advocate

Kevin Anderson is a British climate scientist. Anderson has a decade of industrial experience, principally as an engineer in the petrochemical industry. He regularly provides advice on issues of climate change across different tiers of governance, from local and regional through to national and the European Commission.

<span class="mw-page-title-main">Climate change scenario</span> Projections of future greenhouse gas emissions

Climate change scenarios or socioeconomic scenarios are projections of future greenhouse gas (GHG) emissions used by analysts to assess future vulnerability to climate change. Scenarios and pathways are created by scientists to survey any long term routes and explore the effectiveness of mitigation and helps us understand what the future may hold this will allow us to envision the future of human environment system. Producing scenarios requires estimates of future population levels, economic activity, the structure of governance, social values, and patterns of technological change. Economic and energy modelling can be used to analyze and quantify the effects of such drivers.

<span class="mw-page-title-main">Greenhouse gas emissions by the United Kingdom</span> Overview of the greenhouse gas emissions by United Kingdom

In 2021, net greenhouse gas (GHG) emissions in the United Kingdom (UK) were 427 million tonnes (Mt) carbon dioxide equivalent, 80% of which was carbon dioxide itself. Emissions increased by 5% in 2021 with the easing of COVID-19 restrictions, primarily due to the extra road transport. The UK has over time emitted about 3% of the world total human caused CO2, with a current rate under 1%, although the population is less than 1%.

The End Use Energy Demand (EUED) Centres carry out interdisciplinary research and advise policy on reducing energy demand to help achieve the UK government's CO2 emissions targets. The Centres are a £30m investment of the Research Councils UK Energy Programme that run from 2013 to 2018. The six large centres are based across 25 institutions and encompass over 200 researchers.

<span class="mw-page-title-main">IPCC Sixth Assessment Report</span> Intergovernmental report on climate change

The Sixth Assessment Report (AR6) of the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC) is the sixth in a series of reports which assess scientific, technical, and socio-economic information concerning climate change. Three Working Groups covered the following topics: The Physical Science Basis (WGI); Impacts, Adaptation and Vulnerability (WGII); Mitigation of Climate Change (WGIII). Of these, the first study was published in 2021, the second report February 2022, and the third in April 2022. The final synthesis report was finished in March 2023.

References

  1. "PAS 2050 Assessment of life cycle greenhouse gas emissions". shop.bsigroup.com.
  2. Barrett, John; Wiedmann, Tommy; Minx, Jan (July 20, 2008). "Development of an embedded carbon emissions indicator: Producing a time series of input-output tables and embedded carbon dioxide emissions for the UK by using a MRIO data optimisation system" via www.sei.org.{{cite journal}}: Cite journal requires |journal= (help)
  3. "Working Group II — IPCC".
  4. "BBC - Radio 4 - The Material World 16/3/2006". www.bbc.co.uk.
  5. "BBC - Radio 4 You and Yours -Energy saving". www.bbc.co.uk.
  6. "Route map to a low carbon Scotland and a better quality of life". University of York.
  7. "Rising energy costs and insecurity show EU must get real about reducing demand". www.ukerc.ac.uk.
  8. "No. 63714". The London Gazette (Supplement). 1 June 2022. p. B11.