Joint Unmanned Combat Air Systems

Last updated
Boeing X-45 at the National Museum of the United States Air Force Boeing X-45-NMUSAF.jpg
Boeing X-45 at the National Museum of the United States Air Force

Joint Unmanned Combat Air Systems, or J-UCAS, was the name for the joint U.S. Navy and U.S. Air Force unmanned combat air vehicle procurement project. The two vehicles involved in the project were the Boeing X-45 and Northrop Grumman X-47. J-UCAS was managed by the Defense Advanced Research Projects Agency. In the 2006 Quadrennial Defense Review, it was stated that the J-UCAS program would be terminated and instead a new long-range strategic bomber program, " Next-Generation Bomber ", for the Air Force has been launched. [1] The program was revitalized into a Navy-only program named UCAS-D. [2]

Contents

History

It is unusual for DARPA to be involved with advanced development programs; the agency normally performs proof-of-concept demonstrations and then hands follow-on programs on to interested military services. Apparently this arrangement was driven from the office of the secretary of defense, the idea being that DARPA would be able to keep the development effort on track until advanced demonstrators were available, and then the program would have so much momentum that it would keep on going. The long list of US military UAV programs that have been bungled and dropped after much expense and effort, with some of them like the Hunter ending up effectively reaching operational service in spite of it, provoked the decision.

Of course, the candidates for the J-UCAS program included developments of the follow-ons to the Boeing X-45A and the Northrop Grumman X-47 Pegasus. DARPA and Boeing had been working on the "X-45B", a scaled-up X-45A that was seen as the prototype for an operational machine that would reach service in 2008, and would carry a 1,590 kilogram (3,500 pound) warload to a combat radius of 1,665 kilometers (900 nautical miles). Two were to be built, but before any metal could be bent for the two X-45B prototypes planned, the Air Force redirected the effort to an even more capable machine, the "X-45C".

The X-45C, as currently envisioned, will be a flying wing powered by a single F404-GE-102D turbofan engine. Current specs include:

The payload and range specifications are as defined by J-UCAS requirements. The operational radius specification is for a strike to a predefined target and back home again. A secondary range specification dictates a two-hour loiter capability at a radius of 1,850 kilometers (1,000 NMI).

Partly because of the pressure from Boeing, in the summer of 2003, Northrop Grumman formed an alliance with Lockheed Martin to help develop the "X-47B", a follow-on to the X-47 that would compete against Boeing efforts. The alliance, which repeats the successful teamup that won the F-35 Joint Strike Fighter effort, is focused on building a modular stealthy UCAV that could be adapted to a wide range of missions. It would have a speed of Mach 0.8 at 10,670 meters (35,000 feet) and endurance of up to 12 hours.

The goal of the J-UCAS effort is to select a single contractor to provide from 10 to 12 machines for operational evaluation in the 2007-2008 time frame. Current plans are to obtain two X-45Cs and two X-47Bs to perform a comparative evaluation and then select a winner for development in the 2010 time frame.

Specifications for the J-UCAS are still evolving. Right now, both services envision a stealthy machine with a pricetag of $10 to US$15 million, which is actually modest for a sophisticated stealthy combat aircraft. The USAF envisions that J-UCAS will feature:

The USAF has envisioned an operational UCAV as being stored in broken-down form inside a container that can be airlifted, with the UCAV having a specified "shelf life" of 20 years. It would be removed from the container every few years for inspections and could be checked with an electronic test system. The Air Force would also like to use an operational UCAV as the basis of a "penetrating jammer" platform that would penetrate enemy airspace to blind hostile radars. It would replace the Grumman EA-6B Prowler manned electronic warfare aircraft in this role. A reconnaissance payload is also being considered. However, the Air Force wants to focus on the strike role first.

Over the long term, the Air Force is interested in using a UCAV as a platform to carry directed-energy weapons, initially a "high power microwave (HPM)" weapon to fry adversary electronic systems. The HPM weapon would be "fired" out an aperture on the front of the aircraft, with electronic steering used to direct the beam over an arc covering about 45 degrees to either side of the UCAV. The HPM weapon could be followed by a high power laser weapon.

The Navy is interested in many of the features on the Air Force wish list, though the Navy has put reconnaissance and jamming at the top of the list and strike at the bottom, and seems to be indifferent to the containerization concept. Of course, a navalized UCAV would have a stronger airframe and landing gear for carrier takeoffs and landings; an arresting hook; and avionics for automated carrier approach and landing, along with a "relative navigation system" that will tell the UCAV where it is relative to the carrier.

A big concern of program officials is to ensure that widespread use of UCAVs does not increase the number of friendly fire incidents or collateral damage to civilian targets. The evaluation program will investigate this matter in detail. One of the concepts now being given considerable thought is use of a manned aircraft, such as an F-15E Strike Eagle, as a UCAV "mothership", with the weapons systems officer in the back seat directing one or more UCAVs over high-speed datalink.

Related Research Articles

Unmanned combat aerial vehicle Unmanned aerial vehicle that is usually armed

An unmanned combat aerial vehicle (UCAV), also known as a combat drone, colloquially shortened as drone or battlefield UAV, is an unmanned aerial vehicle (UAV) that is used for intelligence, surveillance, target acquisition, and reconnaissance and carries aircraft ordnance such as missiles, ATGMs, and/or bombs in hardpoints for drone strikes. These drones are usually under real-time human control, with varying levels of autonomy. Unlike unmanned surveillance and reconnaissance aerial vehicles, UCAVs are used for both drone strikes and battlefield intelligence.

Stealth aircraft Aircraft which use stealth technology to avoid detection

Stealth aircraft are designed to avoid detection using a variety of technologies that reduce reflection/emission of radar, infrared, visible light, radio frequency (RF) spectrum, and audio, collectively known as stealth technology. The F-117 Nighthawk was the first operational aircraft specifically designed around stealth technology. Other examples of stealth aircraft include the B-2 Spirit, the F-22 Raptor, the F-35 Lightning II, the Chengdu J-20, and the Sukhoi Su-57.

Boeing X-45

The Boeing X-45 unmanned combat air vehicle is a concept demonstrator for a next generation of completely autonomous military aircraft, developed by Boeing's Phantom Works. Manufactured by Boeing Integrated Defense Systems, the X-45 was a part of DARPA's J-UCAS project.

Northrop Grumman X-47A Pegasus

The Northrop Grumman X-47 is a demonstration unmanned combat aerial vehicle. The X-47 began as part of DARPA's J-UCAS program, and is now part of the United States Navy's UCAS-D program to create a carrier-based unmanned aircraft. Unlike the Boeing X-45, initial Pegasus development was company-funded. The original vehicle carries the designation X-47A Pegasus, while the follow-on naval version is designated X-47B.

Dassault nEUROn Experimental unmanned combat aerial vehicle

The Dassault nEUROn is an experimental unmanned combat aerial vehicle (UCAV) being developed with international cooperation, led by the French company Dassault Aviation. Countries involved in this project include France, Greece, Italy, Spain, Sweden and Switzerland. The design goal is to create a stealthy, autonomous UAV that can function in medium-to-high threat combat zones. Comparable projects include the British BAE Systems Taranis, German/Spanish EADS Barracuda, American Boeing X-45 and Northrop Grumman X-47B, the Indian DRDO AURA, and the Russian Mikoyan Skat and Sukhoi Okhotnik.

Hunter-Killer is an unofficial project name based upon an Aviation Week & Space Technology article. The U.S. Air Force's Hunter-Killer program was a tactical unmanned combat air vehicles (UCAV) procurement program. The General Atomics MQ-9 Reaper, a variant of the MQ-1 Predator won the project and was deployed in Afghanistan.

Boeing X-46 UCAV

The Boeing X-46 was a proposed unmanned combat air vehicle (UCAV) that was to be developed in conjunction with the United States Navy and DARPA as a naval carrier-based variant of the Boeing X-45 UCAV being developed for the U.S. Air Force. Two contracts for technology demonstrators were awarded in June 2000, to Boeing for the X-46A and to Northrop Grumman for the X-47A.


The history of unmanned combat aerial vehicles (UCAVs) is closely tied to the general history of unmanned aerial vehicles (UAVs).

Northrop Grumman X-47B Unmanned combat air vehicle demonstrator built by Northrop Grumman

The Northrop Grumman X-47B is a demonstration unmanned combat aerial vehicle (UCAV) designed for aircraft carrier-based operations. Developed by the American defense technology company Northrop Grumman, the X-47 project began as part of DARPA's J-UCAS program, and subsequently became part of the United States Navy's Unmanned Combat Air System Demonstration (UCAS-D) program. The X-47B is a tailless jet-powered blended-wing-body aircraft capable of semi-autonomous operation and aerial refueling.

The United States Navy Unmanned Combat Air System Demonstrator (UCAS-D) program consists of

Next-Generation Bomber

The Next-Generation Bomber was a program to develop a new medium bomber for the United States Air Force. The NGB was initially projected to enter service around 2018 as a stealthy, subsonic, medium-range, medium payload bomber to supplement and possibly—to a limited degree—replace the U.S. Air Force's aging bomber fleet. The NGB program was superseded by the Long Range Strike Bomber (LRS-B) heavy bomber program.

The Unmanned Combat Armed Rotorcraft or UCAR was a program carried out by DARPA and the United States Army in 2002-2004 to develop an unmanned combat helicopter.

Mikoyan Skat

The Mikoyan Skat is a concept of a stealth unmanned combat aerial vehicle (UCAV) being developed by Mikoyan for the Russian Ministry of Defence since 2005.

Boeing Phantom Ray Stealth unmanned combat air vehicle

The Boeing Phantom Ray is an American demonstration stealth unmanned combat air vehicle (UCAV) developed by Boeing using company funds. The autonomous Phantom Ray is a flying wing around the size of a conventional fighter jet, and first flew in April 2011. It will conduct a program of test flights involving surveillance, ground attack and autonomous aerial refueling missions. The developers say it can carry 4,500 pounds of payload.

Ghatak is an autonomous stealthy unmanned combat air vehicle (UCAV), being developed by Aeronautical Development Establishment (ADE) of Defence Research and Development Organisation (DRDO) for the Indian Air Force. The design work on the UCAV is to be carried out by Aeronautical Development Agency (ADA). Autonomous Unmanned Research Aircraft (AURA) was a tentative name for the UCAV. Details of the project are classified.

The Lockheed Martin Sea Ghost was a proposal to fulfill the United States Navy's requirement for an Unmanned Carrier-Launched Airborne Surveillance and Strike aircraft.

Unmanned Carrier-Launched Airborne Surveillance and Strike

The Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) was a United States Navy program to develop an autonomous carrier-based unmanned combat aerial vehicle providing an unmanned intelligence and strike asset to the fleet. After debate over whether the UCLASS should primarily focus on stealthy bombing or scouting, the Pentagon instead changed the program entirely into the Carrier-Based Aerial-Refueling System (CBARS) to create a UAV for aerial refueling duties to extend the range of manned fighters, which lead to the Boeing MQ-25 Stingray.

The Northrop Grumman RQ-180 is an American stealth unmanned aerial vehicle (UAV) surveillance aircraft intended for contested airspace. As of 2019, there had been no images or statements released, but growing evidence points to the existence of the RQ-180 and its use in regular front-line service.

Boeing MQ-25 Stingray American military aerial refuelling drone

The Boeing MQ-25 Stingray is an aerial refueling drone that resulted from the Carrier-Based Aerial-Refueling System (CBARS) program, which grew out of the earlier Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) program. The MQ-25 first flew on 19 September 2019.

Kratos XQ-58 Valkyrie Planned stealthy unmanned combat air vehicle for the US Air Force

The Kratos XQ-58 Valkyrie is an experimental stealthy unmanned combat aerial vehicle (UCAV) designed and built by Kratos Defense & Security Solutions for the United States Air Force Low Cost Attritable Strike Demonstrator (LCASD) program, under the USAF Research Laboratory’s Low Cost Attritable Aircraft Technology (LCAAT) project portfolio. It was initially designated XQ-222. The Valkyrie successfully completed its first flight on 5 March 2019 at Yuma Proving Ground, Arizona.

References

  1. "Pentagon Sets Plan For New Bomber, Terminates J-UCAS Program", GlobalSecurity.org, 13 January 2006
  2. "Carrier UCAVs: The Return of UCAS", Defense Industry Daily, 7 February 2010[ dead link ]