In complex analysis, Jordan's lemma is a result frequently used in conjunction with the residue theorem to evaluate contour integrals and improper integrals. The lemma is named after the French mathematician Camille Jordan.
Consider a complex-valued, continuous function f, defined on a semicircular contour
of positive radius R lying in the upper half-plane, centered at the origin. If the function f is of the form
with a positive parameter a, then Jordan's lemma states the following upper bound for the contour integral:
with equality when g vanishes everywhere, in which case both sides are identically zero. An analogous statement for a semicircular contour in the lower half-plane holds when a < 0.
| (*) |
Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = ei a z g(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z1, z2, …, zn. Consider the closed contour C, which is the concatenation of the paths C1 and C2 shown in the picture. By definition,
Since on C2 the variable z is real, the second integral is real:
The left-hand side may be computed using the residue theorem to get, for all R larger than the maximum of |z1|, |z2|, …, |zn|,
where Res(f, zk) denotes the residue of f at the singularity zk. Hence, if f satisfies condition ( * ), then taking the limit as R tends to infinity, the contour integral over C1 vanishes by Jordan's lemma and we get the value of the improper integral
The function
satisfies the condition of Jordan's lemma with a = 1 for all R > 0 with R ≠ 1. Note that, for R > 1,
hence ( * ) holds. Since the only singularity of f in the upper half plane is at z = i, the above application yields
Since z = i is a simple pole of f and 1 + z2 = (z + i)(z − i), we obtain
so that
This result exemplifies the way some integrals difficult to compute with classical methods are easily evaluated with the help of complex analysis.
This example shows that Jordan's lemma can be used instead of a much simpler estimation lemma. Indeed, estimation lemma suffices to calculate , as well as , Jordan's lemma here is unnecessary.
By definition of the complex line integral,
Now the inequality
yields
Using MR as defined in ( * ) and the symmetry sin θ = sin(π − θ), we obtain
Since the graph of sin θ is concave on the interval θ ∈ [0, π ⁄ 2], the graph of sin θ lies above the straight line connecting its endpoints, hence
for all θ ∈ [0, π ⁄ 2], which further implies
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form
The Fresnel integralsS(x) and C(x) are two transcendental functions named after Augustin-Jean Fresnel that are used in optics and are closely related to the error function (erf). They arise in the description of near-field Fresnel diffraction phenomena and are defined through the following integral representations:
In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line, which may not intersect the generatrix. The surface created by this revolution and which bounds the solid is the surface of revolution.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.
In mathematics, the Clausen function, introduced by Thomas Clausen (1832), is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.
The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.
In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:
In mathematics, the Borel–Carathéodory theorem in complex analysis shows that an analytic function may be bounded by its real part. It is an application of the maximum modulus principle. It is named for Émile Borel and Constantin Carathéodory.
In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Physical (natural philosophy) interpretation: S any surface, V any volume, etc.. Incl. variable to time, position, etc.
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
In probability theory and directional statistics, a wrapped probability distribution is a continuous probability distribution that describes data points that lie on a unit n-sphere. In one dimension, a wrapped distribution consists of points on the unit circle. If is a random variate in the interval with probability density function (PDF) , then is a circular variable distributed according to the wrapped distribution and is an angular variable in the interval distributed according to the wrapped distribution .
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.
In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel (1823) and Giovanni Antonio Amedeo Plana (1820). It states that
In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.