Joule (programming language)

Last updated
Joule
Paradigm multi-paradigm: object-oriented, distributed, Dataflow
Designed by E. Dean Tribble
First appeared1996
Typing discipline untyped
Influenced by
Concurrent Logic Programming, Actors
Influenced
E

Joule is a capability-secure massively-concurrent dataflow programming language, designed for building distributed applications. [1] It is so concurrent that the order of statements within a block is irrelevant to the operation of the block. Statements are executed whenever possible, based on their inputs. Everything in Joule happens by sending messages. There is no control flow. Instead, the programmer describes the flow of data, making it a dataflow programming language.[ citation needed ]

Contents

Joule development started in 1994 at Agorics in Palo Alto, California. [2] It is considered the precursor to the E programming language. [3] [4]

Language syntax

Numerals consist of ASCII digits 0–9; identifiers are Unicode sequences of digits, letters, and operator characters that begin with a letter. It is also possible to form identifiers by using Unicode sequences (including whitespace) enclosed by either straight (' ') or standard (‘ ’) single quotes, where the backslash is the escape character. Keywords have to start with a letter, except the keyword to send information. Operators consist of Unicode sequences of digits, letters, and operator characters, beginning with an operator character. Labels are identifiers followed by a colon (':'). [5]

At the root, Joule is an imperative language and because of that a statement-based language. It has a rich expression syntax, which transforms easily to its relational syntax underneath. Complex expressions become separate statements, where the site of the original expression is replaced by a reference to the acceptor of the results channel. Therefore, nested expressions still compute completely concurrently with their embedding statement. [5]

   If amount <= balance        • account withdraw: amount    else        • account report-bounce:    end

An identifiers may name a channel to communicate with the server. If this is the case, it is said to be bound to that channel. [5]

Related Research Articles

C (programming language) General-purpose programming language

C is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software, and is common in computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems.

Rebol is a cross-platform data exchange language and a multi-paradigm dynamic programming language designed by Carl Sassenrath for network communications and distributed computing. It introduces the concept of dialecting: small, optimized, domain-specific languages for code and data, which is also the most notable property of the language according to its designer Carl Sassenrath:

Although it can be used for programming, writing functions, and performing processes, its greatest strength is the ability to easily create domain-specific languages or dialects

In computer science, control flow is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an imperative programming language from a declarative programming language.

In a computer language, a reserved word is a word that cannot be used as an identifier, such as the name of a variable, function, or label – it is "reserved from use". This is a syntactic definition, and a reserved word may have no user-defined meaning.

In computer science, extended Backus–Naur form (EBNF) is a family of metasyntax notations, any of which can be used to express a context-free grammar. EBNF is used to make a formal description of a formal language such as a computer programming language. They are extensions of the basic Backus–Naur form (BNF) metasyntax notation.

In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable. In most imperative programming languages, the assignment statement is a fundamental construct.

In computer programming, a block or code block or block of code is a lexical structure of source code which is grouped together. Blocks consist of one or more declarations and statements. A programming language that permits the creation of blocks, including blocks nested within other blocks, is called a block-structured programming language. Blocks are fundamental to structured programming, where control structures are formed from blocks.

TI-BASIC is the official name of a BASIC-like language built into Texas Instruments (TI)'s graphing calculators. TI-BASIC is a language family of three different and incompatible versions, released on different products:

In computing, dataflow is a broad concept, which has various meanings depending on the application and context. In the context of software architecture, data flow relates to stream processing or reactive programming.

In computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the data flowing between operations, thus implementing dataflow principles and architecture. Dataflow programming languages share some features of functional languages, and were generally developed in order to bring some functional concepts to a language more suitable for numeric processing. Some authors use the term datastream instead of dataflow to avoid confusion with dataflow computing or dataflow architecture, based on an indeterministic machine paradigm. Dataflow programming was pioneered by Jack Dennis and his graduate students at MIT in the 1960s.

MBASIC is the Microsoft BASIC implementation of BASIC for the CP/M operating system. MBASIC is a descendant of the original Altair BASIC interpreters that were among Microsoft's first products. MBASIC was one of the two versions of BASIC bundled with the Osborne 1 computer. The name "MBASIC" is derived from the disk file name MBASIC.COM of the BASIC interpreter.

Dataflow architecture is a computer architecture that directly contrasts the traditional von Neumann architecture or control flow architecture. Dataflow architectures have no program counter, in concept: the executability and execution of instructions is solely determined based on the availability of input arguments to the instructions, so that the order of instruction execution is unpredictable, i.e., behavior is nondeterministic.

E is an object-oriented programming language for secure distributed computing, created by Mark S. Miller, Dan Bornstein, Douglas Crockford, Chip Morningstar and others at Electric Communities in 1997. E is mainly descended from the concurrent language Joule and from Original-E, a set of extensions to Java for secure distributed programming. E combines message-based computation with Java-like syntax. A concurrency model based on event loops and promises ensures that deadlock can never occur.

In computer programming languages, a switch statement is a type of selection control mechanism used to allow the value of a variable or expression to change the control flow of program execution via search and map.

In computer science, future, promise, delay, and deferred refer to constructs used for synchronizing program execution in some concurrent programming languages. They describe an object that acts as a proxy for a result that is initially unknown, usually because the computation of its value is not yet complete.

Concurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts.

C++11 is a version of the ISO/IEC 14882 standard for the C++ programming language. C++11 replaced the prior version of the C++ standard, called C++03, and was later replaced by C++14. The name follows the tradition of naming language versions by the publication year of the specification, though it was formerly named C++0x because it was expected to be published before 2010.

The following outline is provided as an overview of and topical guide to computer programming:

In computing, reactive programming is a declarative programming paradigm concerned with data streams and the propagation of change. With this paradigm, it's possible to express static or dynamic data streams with ease, and also communicate that an inferred dependency within the associated execution model exists, which facilitates the automatic propagation of the changed data flow.

CAL is a high-level programming language for writing (dataflow) actors, which are stateful operators that transform input streams of data objects (tokens) into output streams. CAL has been compiled to a variety of target platforms, including single-core processors, multicore processors, and programmable hardware. It has been used in several application areas, including video and processing, compression and cryptography. The MPEG Reconfigurable Video Coding (RVC) working group has adopted CAL as part of their standardization efforts.

References

  1. Miller, Mark Samuel (2006). "Robust composition: towards a unified approach to access control and concurrency control". Johns Hopkins University.{{cite journal}}: Cite journal requires |journal= (help)
  2. Fremont, David (October 1994). "Waiting for the cyber-ax". Spin . 10 (7): 88.
  3. "Related Links to Agoric Computing & Smart Contracts". erights.org. E's debt to Joule cannot be overstated.
  4. "The E Programmer's Manual". Electric Communities. 19 July 1996. The E programming language was largely inspired by the language Joule, currently being developed by Dean Tribble, Norm Hardy, and their colleagues at Agorics, Inc.
  5. 1 2 3 "Joule: Distributed Application Foundations: 4.2. Expressions" (PDF). 1. Agorics, Inc. 20 December 2004: 31–33. Retrieved 2012-08-29.{{cite journal}}: Cite journal requires |journal= (help)