KG-13

Last updated

The KG-13 was the first transistorized cryptographic machine developed by the NSA in the early 60's. [1] It used the newly developed 2N404 germanium transistor instead of vacuum tubes. It consisted of a KG-3 transmitter and a KG-12 receiver. The transmitter used about 500 transistors and the receiver about 300. The transmitter was switchable to function as a receiver. [2]

Contents

KG-13 (PONTUS)

The KG-13 Electronic Key Generator, Transmitter/Receiver was similar in appearance to the KG-14. This solid state design dating from the mid-to-late 1960s, originally cost $13,000 per copy. It was one of the first crypto machines to encrypt data such as facsimile. Crypto technicians received 10 to 12 weeks training on the machine. The KG-13 was composed of a KG-3 transmitter and a KG-12 receiver.

A KG-13 unit. One drawer bears the designation KGD-3/TSEC. The total weight is around 250 pounds. The KG-13 was controlled by "key cards". These were IBM-like punch cards that determined the starting point of the KG-13 encryption which was done by "koken stages". The key cards were changed daily at HJ time. When the USS Pueblo, with a KG-13 aboard, was captured by the North Koreans in 1968, the personnel didn't have time to destroy it. As a result, a working model of the KG-13 fell into enemy hands. NSA quickly designed a modification to the koken stage board to alter its operation in order that the enemy didn't have an identical working model.

Card Reader Description

Select this link to see the inside of the card reader. Ronald Coppock, who worked with the KG-13 indicates that it was fitted with a card cutter and also without. "In Ethiopia, I worked at two locations (Stonehouse and Tract C) that had KG13's equipped with the KW26 style card cutters. All the machines at Stonehouse were equipped that way and about 20% at Tract C. At the 7th Radio Research in South East Asia, about 30% of the KG13's had the card cutter style card readers. 13's equipped with the card cutters were operated on very high priority circuits with short cycles to change key material. Some were on 6 hour and others on 12 hour cycles".

The KG-13 did have a major difference in that in its latter years, it was equipped with a Card Reader Insert Board or CRIB.

Internal Description

The KG-13 employed "FLYBALL" modules. These were modules made of discrete components set up as logic element circuit groups such as NAND gates, NOR gates, XOR gates, flip flops, monostables, multivibrators, etc. Once tested, the modules were potted in a compound whose colour indicated their function. The coloured potting compound was extremely hard and any attempt to penetrate it resulted in damage to the internal circuitry.

In a KG-13, the following colours are confirmed: Pink, Yellow, Green, Blue, Red, Orange and Black. Purple and Brown modules were probably used but those colours are unconfirmed as of this time. Yellow modules were single transistor emitter follower clock drivers. Pink modules were two transistor shift register flip flops. Each yellow module drove nine pink ones. A two transistor multivibrator module drove the audio alarm thru an amplifier. Two transistor monostables were also used. NAND and NOR modules were built from a single transistor and XOR modules were built from two transistors. Failures usually occurred in the power supplies, buffers, and synchronizers though most problems were quickly resolved. When new, there was a high frequency of failures due to cold solder joints.

One board in the KG-13 had a black module which was a noise generator containing a Zener diode noise source. This was the only classified module because the noise was used to randomize the key stream on startup. The circuitry inside the module then used the koken chain shift registers to create an pseudo random key stream. That was why there was no problem in restarting the KG-13 with the same card. The noise source ensured that the chances of duplicating the start point was negligible.

Two of the key cards were for the transmitter and the third for the receiver. There were two for the transmitter because it had two key generators. The keystream mixed with the plain text produced the ciphertext. Two key generators generating the same keystream should match bit for bit at the output and a mismatch would cause a crypto alarm and a shutdown of the output. A key generator failure would stop transmission and prevent a compromise. With only a single key generator in the transmitter a failure could produce a trivial keystream (all one's, all zero's or alternations). A receiver key generator failure just produced garble. The KG-3 could be used to transmit or receive since there is a XMIT/RECV switch on in the lower right hand portion of the lowest unit.

In the 1964/65 time frame, crypto techs were taught that it would take 50,000 years to break the key on a KG-13 using state of the art techniques which were available at the time. The KG-13 also employed traffic flow security.

Steve Gardner recalls "One of our operations sites which monitored satellites used an item called a "shark" between the teletype and the KG-13. It was a block message transceiver". KG-13's were taken out of service around 1989–90. This was one of the last discrete component crypto machines built. Shortly after this time, integrated circuits started to appear in crypto machine designs.

An illustrated article describing its arrival at the museum appeared in the Spring 2004 issue of the NCMF internal publication, "The Link". As of 2010, the KG-13 is in storage.

Related Research Articles

<span class="mw-page-title-main">Multivibrator</span> Electronic circuit used to implement two-state devices

A multivibrator is an electronic circuit used to implement a variety of simple two-state devices such as relaxation oscillators, timers, latches and flip-flops. The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I. It consisted of two vacuum tube amplifiers cross-coupled by a resistor-capacitor network. They called their circuit a "multivibrator" because its output waveform was rich in harmonics. A variety of active devices can be used to implement multivibrators that produce similar harmonic-rich wave forms; these include transistors, neon lamps, tunnel diodes and others. Although cross-coupled devices are a common form, single-element multivibrator oscillators are also common.

In cryptography, RC4 is a stream cipher. While it is remarkable for its simplicity and speed in software, multiple vulnerabilities have been discovered in RC4, rendering it insecure. It is especially vulnerable when the beginning of the output keystream is not discarded, or when nonrandom or related keys are used. Particularly problematic uses of RC4 have led to very insecure protocols such as WEP.

<span class="mw-page-title-main">Stream cipher</span> Type of symmetric key cipher

A stream cipher is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. Since encryption of each digit is dependent on the current state of the cipher, it is also known as state cipher. In practice, a digit is typically a bit and the combining operation is an exclusive-or (XOR).

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Siemens and Halske T52</span>

The Siemens & Halske T52, also known as the Geheimschreiber, or Schlüsselfernschreibmaschine (SFM), was a World War II German cipher machine and teleprinter produced by the electrical engineering firm Siemens & Halske. The instrument and its traffic were codenamed Sturgeon by British cryptanalysts.

<span class="mw-page-title-main">Schmitt trigger</span> Electronic comparator circuit with hysteresis

In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the noninverting input of a comparator or differential amplifier. It is an active circuit which converts an analog input signal to a digital output signal. The circuit is named a trigger because the output retains its value until the input changes sufficiently to trigger a change. In the non-inverting configuration, when the input is higher than a chosen threshold, the output is high. When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator. There is a close relation between the two kinds of circuits: a Schmitt trigger can be converted into a latch and a latch can be converted into a Schmitt trigger.

Gilbert Sandford Vernam was a Worcester Polytechnic Institute 1914 graduate and AT&T Bell Labs engineer who, in 1917, invented an additive polyalphabetic stream cipher and later co-invented an automated one-time pad cipher. Vernam proposed a teleprinter cipher in which a previously prepared key, kept on paper tape, is combined character by character with the plaintext message to produce the ciphertext. To decipher the ciphertext, the same key would be again combined character by character, producing the plaintext. Vernam later worked for the Postal Telegraph Company, and became an employee of Western Union when that company acquired Postal in 1943. His later work was largely with automatic switching systems for telegraph networks.

Explorer 2 was an American unmanned space mission within the Explorer program. Intended to be a repetition of the previous Explorer 1 mission, which placed a satellite into medium Earth orbit, the spacecraft was unable to reach orbit due to a failure in the launch vehicle during launch.

Reading is an action performed by computers, to acquire data from a source and place it into their volatile memory for processing. Computers may read information from a variety of sources, such as magnetic storage, the Internet, or audio and video input ports. Reading is one of the core functions of a Turing machine.

<span class="mw-page-title-main">KW-26</span>

The TSEC/KW-26, code named ROMULUS, was an encryption system used by the U.S. Government and, later, by NATO countries. It was developed in the 1950s by the National Security Agency (NSA) to secure fixed teleprinter circuits that operated 24 hours a day. It used vacuum tubes and magnetic core logic, replacing older systems, like SIGABA and the British 5-UCO, that used rotors and electromechanical relays.

<span class="mw-page-title-main">KW-37</span>

The KW-37, code named JASON, was an encryption system developed In the 1950s by the U.S. National Security Agency to protect fleet broadcasts of the U.S. Navy. Naval doctrine calls for warships at sea to maintain radio silence to the maximum extent possible to prevent ships from being located by potential adversaries using radio direction finding. To allow ships to receive messages and orders, the navy broadcast a continuous stream of information, originally in Morse code and later using radioteletype. Messages were included in this stream as needed and could be for individual ships, battle groups or the fleet as a whole. Each ship's radio room would monitor the broadcast and decode and forward those messages directed at her to the appropriate officer. The KW-37 was designed to automate this process. It consisted of two major components, the KWR-37 receive unit and the KWT-37 transmit unit. Each ship had a complement of KWR-37 receivers that decrypted the fleet broadcast and fed the output to teleprinter machines. KWT-37's were typically located at shore facilities, where high power transmitters were located.

The National Security Agency took over responsibility for all U.S. Government encryption systems when it was formed in 1952. The technical details of most NSA-approved systems are still classified, but much more about its early systems have become known and its most modern systems share at least some features with commercial products.

<span class="mw-page-title-main">Shuffling machine</span> Machine for shuffling playing cards

A shuffling machine is a machine for randomly shuffling packs of playing cards.

E0 is a stream cipher used in the Bluetooth protocol. It generates a sequence of pseudorandom numbers and combines it with the data using the XOR operator. The key length may vary, but is generally 128 bits.

The Microsoft Windows platform specific Cryptographic Application Programming Interface is an application programming interface included with Microsoft Windows operating systems that provides services to enable developers to secure Windows-based applications using cryptography. It is a set of dynamically linked libraries that provides an abstraction layer which isolates programmers from the code used to encrypt the data. The Crypto API was first introduced in Windows NT 4.0 and enhanced in subsequent versions.

XOR gate is a digital logic gate that gives a true output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0/LOW) or both are true, a false output results. XOR represents the inequality function, i.e., the output is true if the inputs are not alike otherwise the output is false. A way to remember XOR is "must have one or the other but not both".

In cryptography, a distinguishing attack is any form of cryptanalysis on data encrypted by a cipher that allows an attacker to distinguish the encrypted data from random data. Modern symmetric-key ciphers are specifically designed to be immune to such an attack. In other words, modern encryption schemes are pseudorandom permutations and are designed to have ciphertext indistinguishability. If an algorithm is found that can distinguish the output from random faster than a brute force search, then that is considered a break of the cipher.

In cryptography, a key ceremony is a ceremony held to generate or use a cryptographic key.

<span class="mw-page-title-main">Crypto-1</span> Stream cipher

Crypto1 is a proprietary encryption algorithm and authentication protocol created by NXP Semiconductors for its MIFARE Classic RFID contactless smart cards launched in 1994. Such cards have been used in many notable systems, including Oyster card, CharlieCard and OV-chipkaart.

Correlation attacks are a class of cryptographic known-plaintext attacks for breaking stream ciphers whose keystreams are generated by combining the output of several linear-feedback shift registers (LFSRs) using a Boolean function. Correlation attacks exploit a statistical weakness that arises from the specific Boolean function chosen for the keystream. While some Boolean functions are vulnerable to correlation attacks, stream ciphers generated using such functions are not inherently insecure.

References

  1. "The People of the CIA: Edward Scheidt". Central Intelligence Agency . Dec 19, 2008. Archived from the original on January 14, 2009.
  2. "KG-13 (PONTUS)". jproc.ca. Oct 10, 2015.

Further reading