KINARM

Last updated

Kinesiological Instrument for Normal and Altered Reaching Movement (KINARM) [1] is an interactive robotic device designed to assess the sensorimotor and cognitive function of the brain through behavioural tasks using the upper limb. There are two types of KINARMs - the KINARM Exoskeleton and the KINARM End-Point. The technology is used by both basic and clinical researchers in order to develop a greater understanding of the neurological impacts of a variety of injuries and diseases. KINARMs allow researchers to collect more objective and quantitative data for assessing brain function than traditional methods. [2] The devices are created by BKIN Technologies Ltd., doing business as Kinarm, in Kingston, Ontario.

Contents

History

The first KINARM robot to be created was the KINARM Exoskeleton. It was developed in 1999 by Stephen Scott, a neuroscientist and researcher at Queen's University. [3] The KINARM Exoskeleton was commercialized in 2004 [4] when BKIN Technologies was founded by Dr. Scott and Dr. Ian Brown with the assistance of PARTEQ Innovations. [5]

Product

KINARM robots assess the user's ability to interact with a two-dimensional virtual reality environment using their upper limbs. The KINARM Exoskeleton uses a motorized exoskeleton to measure and manipulate the function of the upper limbs and is produced in both human and non-human primate (NHP) versions. The KINARM End-Point uses hand-held robotic rods and is used primarily for human use. Both robot labs are available with gaze-tracking technology. [6]

The KINARM Exoskeleton Lab. KINARMExoskeleton2014.jpg
The KINARM Exoskeleton Lab.
The KINARM End-Point Lab. KINARMEndpointDemo2015.jpg
The KINARM End-Point Lab.

As of 2018, there were roughly 100 KINARM labs distributed in 14 countries worldwide. [7]

KINARM standard tests

The KINARM Standard Tests (KST) form a library of automated behavioural tasks designed for use with KINARMs. The KST database has been extensively used in research publications and has created a universal platform for the comparison of data on neurological function among normal and impaired human populations. [8] [9] [10]

Applications

There are over 275 published peer-reviewed journal articles that use KINARM Labs. [11]

KINARM Labs are being used for concussion evaluation in high-performance athletes at the Canadian Winter Sport Institute as a part of the Canadian Olympic Committee's national concussion strategy. [12] [13]

See also

Related Research Articles

<span class="mw-page-title-main">Tremor</span> Involuntary muscle contraction

A tremor is an involuntary, somewhat rhythmic, muscle contraction and relaxation involving oscillations or twitching movements of one or more body parts. It is the most common of all involuntary movements and can affect the hands, arms, eyes, face, head, vocal folds, trunk, and legs. Most tremors occur in the hands. In some people, a tremor is a symptom of another neurological disorder.

Rehabilitation of sensory and cognitive function typically involves methods for retraining neural pathways or training new neural pathways to regain or improve neurocognitive functioning that have been diminished by disease or trauma. The main objective outcome for rehabilitation is to assist in regaining physical abilities and improving performance. Three common neuropsychological problems treatable with rehabilitation are attention deficit/hyperactivity disorder (ADHD), concussion, and spinal cord injury. Rehabilitation research and practices are a fertile area for clinical neuropsychologists, rehabilitation psychologists, and others.

<span class="mw-page-title-main">Brain–computer interface</span> Direct communication pathway between an enhanced or wired brain and an external device

A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI), is a direct communication link between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. They are often conceptualized as a human–machine interface that skips the intermediary of moving body parts (hands...), although they also raise the possibility of erasing the distinction between brain and machine. BCI implementations range from non-invasive and partially invasive to invasive, based on how physically close electrodes are to brain tissue.

The primary goals of stroke management are to reduce brain injury and promote maximum patient recovery. Rapid detection and appropriate emergency medical care are essential for optimizing health outcomes. When available, patients are admitted to an acute stroke unit for treatment. These units specialize in providing medical and surgical care aimed at stabilizing the patient's medical status. Standardized assessments are also performed to aid in the development of an appropriate care plan. Current research suggests that stroke units may be effective in reducing in-hospital fatality rates and the length of hospital stays.

<span class="mw-page-title-main">Hybrid Assistive Limb</span>

The Hybrid Assistive Limb is a powered, soft-bodied exoskeleton suit developed by Japan's Tsukuba University and the robotics company Cyberdyne. It is designed to support and expand the physical capabilities of its users, particularly people with physical disabilities. There are two primary versions of the system: HAL 3, which only provides leg function, and HAL 5, which is a full-body exoskeleton for the arms, legs, and torso.

Bio-mechatronics is an applied interdisciplinary science that aims to integrate biology and mechatronics. It also encompasses the fields of robotics and neuroscience. Biomechatronic devices cover a wide range of applications, from developing prosthetic limbs to engineering solutions concerning respiration, vision, and the cardiovascular system.

<span class="mw-page-title-main">Acquired brain injury</span> Brain damage caused by events after birth

Acquired brain injury (ABI) is brain damage caused by events after birth, rather than as part of a genetic or congenital disorder such as fetal alcohol syndrome, perinatal illness or perinatal hypoxia. ABI can result in cognitive, physical, emotional, or behavioural impairments that lead to permanent or temporary changes in functioning. These impairments result from either traumatic brain injury or nontraumatic injury derived from either an internal or external source. ABI does not include damage to the brain resulting from neurodegenerative disorders.

Neuroergonomics is the application of neuroscience to ergonomics. Traditional ergonomic studies rely predominantly on psychological explanations to address human factors issues such as: work performance, operational safety, and workplace-related risks. Neuroergonomics, in contrast, addresses the biological substrates of ergonomic concerns, with an emphasis on the role of the human nervous system.

<span class="mw-page-title-main">Ryan AbilityLab</span> Hospital in Illinois, United States

The Shirley Ryan AbilityLab, formerly the Rehabilitation Institute of Chicago (RIC), is a not-for-profit nationally ranked physical medicine and rehabilitation research hospital based in Chicago, Illinois. Founded in 1954, the AbilityLab is designed for patient care, education, and research in physical medicine and rehabilitation (PM&R). The AbilityLab specializes in rehabilitation for adults and children with the most severe, complex conditions ranging from traumatic brain and spinal cord injury to stroke, amputation and cancer-related impairment. Affiliated with Northwestern University, the hospital is located on Northwestern’s Chicago campus and partners on research and medical efforts.

<span class="mw-page-title-main">Balance (ability)</span> Ability to maintain the line of gravity of a body

Balance in biomechanics, is an ability to maintain the line of gravity of a body within the base of support with minimal postural sway. Sway is the horizontal movement of the centre of gravity even when a person is standing still. A certain amount of sway is essential and inevitable due to small perturbations within the body or from external triggers. An increase in sway is not necessarily an indicator of dysfunctional balance so much as it is an indicator of decreased sensorimotor control.

Rehabilitation robotics is a field of research dedicated to understanding and augmenting rehabilitation through the application of robotic devices. Rehabilitation robotics includes development of robotic devices tailored for assisting different sensorimotor functions(e.g. arm, hand, leg, ankle), development of different schemes of assisting therapeutic training, and assessment of sensorimotor performance of patient; here, robots are used mainly as therapy aids instead of assistive devices. Rehabilitation using robotics is generally well tolerated by patients, and has been found to be an effective adjunct to therapy in individuals with motor impairments, especially due to stroke.

<span class="mw-page-title-main">Powered exoskeleton</span> Wearable machine meant to enhance a persons strength and mobility

A powered exoskeleton is a mobile machine that is wearable over all or part of the human body, providing ergonomic structural support and powered by a system of electric motors, pneumatics, levers, hydraulics or a combination of cybernetic technologies, while allowing for sufficient limb movement with increased strength and endurance. The exoskeleton is designed to provide better mechanical load tolerance, and its control system aims to sense and synchronize with the user's intended motion and relay the signal to motors which manage the gears. The exoskeleton also protects the user's shoulder, waist, back and thigh against overload, and stabilizes movements when lifting and holding heavy items.

<span class="mw-page-title-main">Restorative neurology</span>

Restorative neurology is a branch of neurology dedicated to improving functions of the impaired nervous system through selective structural or functional modification of abnormal neurocontrol according to underlying mechanisms and clinically unrecognized residual functions. When impaired, the body naturally reconstructs new neurological pathways and redirects activity. The field of restorative neurology works to accentuate these new pathways and primarily focuses on the theory of the plasticity of an impaired nervous system. Its main goal is to take a broken down and disordered nervous system and return it to a state of normal function. Certain treatment strategies are used to augment instead of fully replace any performance of surviving and also improving the potential of motor neuron functions. This rehabilitation of motor neurons allows patients a therapeutic approach to recovery opposed to physical structural reconstruction. It is applied in a wide range of disorders of the nervous system, including upper motor neuron dysfunctions like spinal cord injury, cerebral palsy, multiple sclerosis and acquired brain injury including stroke, and neuromuscular diseases as well as for control of pain and spasticity. Instead of applying a reconstructive neurobiological approach, i.e. structural modifications, restorative neurology relies on improving residual function. While subspecialties like neurosurgery and pharmacology exist and are useful in diagnosing and treating conditions of the nervous system, restorative neurology takes a pathophysiological approach. Instead of heavily relying on neurochemistry or perhaps an anatomical discipline, restorative neurology encompasses many fields and blends them together.

Neuromechanics of orthoses refers to how the human body interacts with orthoses. Millions of people in the U.S. suffer from stroke, multiple sclerosis, postpolio, spinal cord injuries, or various other ailments that benefit from the use of orthoses. Insofar as active orthoses and powered exoskeletons are concerned, the technology to build these devices is improving rapidly, but little research has been done on the human side of these human-machine interfaces.

<span class="mw-page-title-main">Cybathlon</span>

Cybathlon, a project of ETH Zurich, acts as a platform that challenges teams from all over the world to develop assistive technologies suitable for everyday use with and for people with disabilities. The driving force behind CYBATHLON is international competitions and events, in which teams consisting of technology developers from universities, companies or NGOs and a person with disabilities (pilot) tackle unsolved everyday tasks with their latest assistive technologies. Besides the actual competition, the Cybathlon offers a benchmarking platform to drive forward research on assistance systems for dealing with daily-life challenges, and to promote dialogue with the public for the inclusion of people with disabilities in society. The involvement of the pilot is considered essential both to the competition and in the development process, to ensure that the perspective and needs of end users are considered and addressed.

<span class="mw-page-title-main">Proportional myoelectric control</span>

Proportional myoelectric control can be used to activate robotic lower limb exoskeletons. A proportional myoelectric control system utilizes a microcontroller or computer that inputs electromyography (EMG) signals from sensors on the leg muscle(s) and then activates the corresponding joint actuator(s) proportionally to the EMG signal.

<span class="mw-page-title-main">Ryan D'Arcy</span> Canadian neuroscientist, innovator and entrepreneur

Ryan C.N. D'Arcy is a Canadian neuroscientist, researcher, innovator and entrepreneur. D'Arcy co-founded HealthTech Connex Inc. where he serves as President and Chief Scientific Officer. HealthTech Connex translates neuroscience advancements into health technology breakthroughs. D'Arcy is most known for coining the term "brain vital signs" and for leading the research and development of the brain vital signs framework.

<span class="mw-page-title-main">Stephen H. Scott</span> Canadian neuroscientist and engineer (born 1964)

Stephen Harold Scott is a Canadian neuroscientist and engineer who has made significant contributions to the field of sensorimotor neuroscience and the methods of assessing neurological function. He is a professor in both the Department of Biomedical and Molecular Sciences and the Department of Medicine at Queen's University. In 2013, he was named the GlaxoSmithKline-Canadian Institutes of Health Research (GSK-CIHR) Chair in Neurosciences at Queen's. He is the Co-Founder and Chief Scientific Officer of Kinarm, the technology transfer company that commercializes and manufactures his invention the Kinarm.

Fugl-Meyer Assessment (FMA) scale is an index to assess the sensorimotor impairment in individuals who have had stroke. This scale was first proposed by Axel Fugl-Meyer and his colleagues as a standardized assessment test for post-stroke recovery in their paper titled The post-stroke hemiplegic patient: A method for evaluation of physical performance. It is now widely used for clinical assessment of motor function. The Fugl-Meyer Assessment score has been tested several times, and is found to have excellent consistency, responsivity and good accuracy. The maximum possible score in Fugl-Meyer scale is 226, which corresponds to full sensory-motor recovery. The minimal clinically important difference of Fugl-Meyer assessment scale is 6 for lower limb in chronic stroke and 9-10 for upper limb in sub-acute stroke.

<span class="mw-page-title-main">Soft exoskeleton</span> Powered exoskeleton without a rigid shell or frame

A soft exoskeleton, also known as a soft wearable robot or a soft robotic exosuit, is a type of wearable robotic device designed to augment and enhance the physical abilities of the human body. Unlike traditional rigid exoskeletons, which are typically made of hard materials like metal and are worn over the user's limbs, soft exoskeletons are constructed from flexible and lightweight materials. Soft exoskeletons are designed to assist individuals with mobility impairments, aid in rehabilitation, augment human performance, and improve overall quality of life.

References

  1. "Prof invents first ever objective brain function assessment tool". The Journal.
  2. Rhamey, Ashley (Aug 13, 2017). "Robots and research". Kingston Whig-Standard. Kingston. Retrieved May 23, 2019.
  3. Scott, S.H. (July 1999). "Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching". Journal of Neuroscience Methods. 89 (2): 119–127. doi:10.1016/S0165-0270(99)00053-9. PMID   10491942. S2CID   23295994.
  4. "BKIN Technologies Ltd". Trillium Network for Advanced Manufacturing. Retrieved May 22, 2019.
  5. Mathison, Dick (Nov 23, 2010). "New technology enables better assessment of brain injuries". Kingston Herald. Kingston. Retrieved May 22, 2019.
  6. "KINARM". Physiopedia. May 10, 2018. Retrieved May 22, 2019.
  7. Willson, Andrew (Dec 4, 2018). "Stephen Scott's robot is changing what we know about the brain". Dean's Blog. Queen's University Faculty of Health Sciences. Retrieved May 22, 2019.
  8. Centen, A.; Lowrey, C.R.; Scott, S.H.; Yeh, T.T.; Mochizuki, G. (June 2017). "KAPS(Kinematic Assessment of Passive Stretch): a tool to assess elbow flexor and extensor hypertonicity after stroke using a robotic exoskeleton". Journal of NeuroEngineering and Rehabilitation. 14 (1): 59. doi: 10.1186/s12984-017-0272-8 . PMC   5477344 . PMID   28629415.
  9. Bourke, T.C.; Lowrey, C.R.; Dukelow, S.P.; Bagg, S.D.; Norman, K.E.; Scott, S.H. (October 2016). "A robotic task quantifies post-stroke impairments in rapid motor decisions and actions". Journal of NeuroEngineering and Rehabilitation. 13 (91): 91. doi: 10.1186/s12984-016-0201-2 . PMC   5057404 . PMID   27724945.
  10. Tyryshkin, K.; Coderre, A.; Glasgow, J.I.; Herter, T.M.; Bagg, S.D.; Dukelow, S.P.; Scott, S.H. (April 2014). "A robotic object hitting task to quantify sensorimotor impairments in participants with stroke". Journal of NeuroEngineering and Rehabilitation. 11 (1): 47. doi: 10.1186/1743-0003-11-47 . PMC   3992166 . PMID   24693877.
  11. "Publications by Research Area". BKIN Technologies. Retrieved May 22, 2019.
  12. Fletcher, Robson (Mar 18, 2019). "Canada adopts new national concussion strategy for high-performance athletes". CBC News. Calgary. Retrieved May 22, 2019.
  13. MacQueen, Ken (Jul 17, 2012). "Team Canada's gold medal secrets". MacLean's magazine. Rogers Media. Retrieved May 22, 2019.