Kakwani index

Last updated

The Kakwani index is a measure of the progressivity of a social intervention, and is used by social scientists, statisticians, and economists. It is named after the economist who first proposed and used it, Nanak Chand Kakwani. [1]

The Kakwani index uses the Gini framework to measure how progressive a social intervention is. It is equal to the difference between the Gini index for the social intervention, and the Gini index for incomes before imposition of the policy intervention. Theoretically, the Kakwani index can vary between −1 and 1; the larger the index is, the more progressive is the social intervention. [2]

The index is calculated using the following formula:

where denotes individual , is the total number of individuals in society, is the share of total taxes paid by individual , and is the before-tax Gini coefficient. Using the formula for the Gini coefficient, the equation for the Kakwani index can be reduced to:

where denotes the share of income received by individual .

The Kakwani index was originally devised to measure the progressivity of tax systems, in which case, it would be equal to the Gini concentration index [ clarification needed ] for the taxes collected minus the Gini index for pre-tax incomes. [2] This can be shown to be equal to the absolute decline in the Gini index for incomes, caused by the imposition of taxation, divided by the average net rate of taxes. [3]

The Kakwani index is also commonly used to examine the equity of government health care provision. In that situation, the Kakwani index would be equal to the difference between the Gini coefficient for incomes and the Gini concentration index for out‐of‐pocket health care payments. [1]

Related Research Articles

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

<span class="mw-page-title-main">Gini coefficient</span> Measure of inequality of a distribution

In economics, the Gini coefficient, also known as the Gini index or Gini ratio, is a measure of statistical dispersion intended to represent the income inequality, the wealth inequality, or the consumption inequality within a nation or a social group. It was developed by Italian statistician and sociologist Corrado Gini.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

The Theil index is a statistic primarily used to measure economic inequality and other economic phenomena, though it has also been used to measure racial segregation.

The Hoover index, also known as the Robin Hood index or the Schutz index, is a measure of income inequality. It is equal to the percentage of the total population's income that would have to be redistributed to make all the incomes equal.

In statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test.

In mathematics, the Nørlund–Rice integral, sometimes called Rice's method, relates the nth forward difference of a function to a line integral on the complex plane. It commonly appears in the theory of finite differences and has also been applied in computer science and graph theory to estimate binary tree lengths. It is named in honour of Niels Erik Nørlund and Stephen O. Rice. Nørlund's contribution was to define the integral; Rice's contribution was to demonstrate its utility by applying saddle-point techniques to its evaluation.

The Atkinson index is a measure of income inequality developed by British economist Anthony Barnes Atkinson. The measure is useful in determining which end of the distribution contributed most to the observed inequality.

In natural language processing, Latent Dirichlet Allocation (LDA) is a Bayesian network that explains a set of observations through unobserved groups, and each group explains why some parts of the data are similar. The LDA is an example of a Bayesian topic model. In this, observations are collected into documents, and each word's presence is attributable to one of the document's topics. Each document will contain a small number of topics.

The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is:

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

The Prandtl lifting-line theory is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing based on its geometry. It is also known as the Lanchester–Prandtl wing theory.

The Foster–Greer–Thorbeckeindices are a family ofpoverty metrics. The most commonly used index from the family, FGT2, puts higher weight on the poverty of the poorest individuals, making it a combined measure of poverty and income inequality and a popular choice within development economics. The indices were introduced in a 1984 paper by economists Erik Thorbecke, Joel Greer, and James Foster.

<span class="mw-page-title-main">Structure constants</span> Coefficients of an algebra over a field

In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements . Therefore, the structure constants can be used to specify the product operation of the algebra. Given the structure constants, the resulting product is obtained by bilinearity and can be uniquely extended to all vectors in the vector space, thus uniquely determining the product for the algebra.

<span class="mw-page-title-main">Generalized entropy index</span> Measure of income inequality

The generalized entropy index has been proposed as a measure of income inequality in a population. It is derived from information theory as a measure of redundancy in data. In information theory a measure of redundancy can be interpreted as non-randomness or data compression; thus this interpretation also applies to this index. In addition, interpretation of biodiversity as entropy has also been proposed leading to uses of generalized entropy to quantify biodiversity.

References

  1. 1 2 De Maio, Fernando G (Oct 2007). "Income inequality measures". Journal of Epidemiology and Community Health. 61 (10): 849–852. doi:10.1136/jech.2006.052969. PMC   2652960 . PMID   17873219.
  2. 1 2 Kakwani, Nanak C. (March 1977). "Measurement of Tax Progressivity: An International Comparison". The Economic Journal. 87 (345): 71–80. doi:10.2307/2231833. JSTOR   2231833.
  3. Bracewell-Milnes, Barry (September 1979). "Measurement of Tax Progressivity: A Comment". The Economic Journal. 89 (355): 648–651. doi:10.2307/2231875. JSTOR   2231875.