Kappa Cygnids

Last updated
Kappa Cygnids
Cygnus constellation map.svg
Celestial map of Cygnus
Parent bodyUnknown
Radiant
Constellation Cygnus (near Kappa Cygni)
Right ascension 19h 4m -0s
Declination +59° 00 00
Properties
Occurs duringAugust 3 to August 25
Date of peakAugust 17
Velocity25 km/s
Zenithal hourly rate 3
See also: List of meteor showers

Kappa Cygnids, abbreviated KCG and IAU shower number 12, was an episodic meteor shower that took place from June to September, peaking around August 13, along with the larger Perseids meteor shower. [1] The radiant of the shower emerged from the antihelion source in late June and moves upwards to Cygnus in July. In early August, the radiant is just west of the star Vega and elongated in a north-south direction. [2] The shower then turns a corner and moves to the east in late August. The Kappa Cygnids are named for the position of the radiant at the peak of the shower, where the meteor shower will appear to line up in sky by the constellation Cygnus and the star Kappa Cygni.

The Kappa Cygnids are unusual in that they are absent in most years, but appear every 7 years (see table below). The years 2020 and 2021 fit in that sequence. The shower is known for occasional bright fireballs with multiple flares.

YearActive BetweenPeak of shower ZHR
1879June - SeptemberAugust 133
1893June - SeptemberAugust 133
1950June - SeptemberAugust 133
1957June - SeptemberAugust 133
1978June - SeptemberAugust 133
1985June - SeptemberAugust 133
1993June - SeptemberAugust 133
1999June - SeptemberAugust 133
2007June - SeptemberAugust 133
2013June - SeptemberAugust 133
2014June - SeptemberAugust 133
2020June - SeptemberAugust 133
2021 [3] June - SeptemberAugust 133

Notes

  1. "IMO Meteor Shower Calendar 2009: Contents: July to September: Kappa Cygnids". IMO.net.
  2. "NASA Meteor Shower Portal". SETI Institute.
  3. "Enhanced kappa Cygnids (KCG#0012) in 2021". eMeteorNews. Retrieved 2009-02-10.


Related Research Articles

<span class="mw-page-title-main">Boötes</span> Constellation in the northern celestial hemisphere

Boötes is a constellation in the northern sky, located between 0° and +60° declination, and 13 and 16 hours of right ascension on the celestial sphere. The name comes from Latin: Boōtēs, which comes from Greek: Βοώτης, translit. Boṓtēs 'herdsman' or 'plowman'.

<span class="mw-page-title-main">Leonids</span> Meteor shower associated with the comet Tempel–Tuttle

The Leonids are a prolific meteor shower associated with the comet Tempel–Tuttle, which are also known for their spectacular meteor storms that occur about every 33 years. The Leonids get their name from the location of their radiant in the constellation Leo: the meteors appear to radiate from that point in the sky. Their proper Greek name should be Leontids, but the word was initially constructed as a Greek/Latin hybrid and it has been used since. The meteor shower peak should be on 17 November, but any outburst is likely to be from the 1733 meteoroid stream.

<span class="mw-page-title-main">Meteoroid</span> Sand- to boulder-sized particle of debris in the Solar System

A meteoroid is a small rocky or metallic body in outer space. Meteoroids are distinguished as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than meteoroids are classified as micrometeoroids or space dust. Most are fragments from comets or asteroids, whereas others are collision impact debris ejected from bodies such as the Moon or Mars.

<span class="mw-page-title-main">Geminids</span>

The Geminids are a prolific meteor shower caused by the object 3200 Phaethon, which is thought to be a Palladian asteroid with a "rock comet" orbit. This would make the Geminids, together with the Quadrantids, the only major meteor showers not originating from a comet. The meteors from this shower are slow moving, can be seen in December and usually peak around December 4–16, with the date of highest intensity being the morning of December 14. The shower is thought to be intensifying every year, and recent showers have seen 120–160 meteors per hour under optimal conditions, generally around 02:00 to 03:00 local time. Geminids were first observed in 1862, much more recently than other showers such as the Perseids and Leonids.

<span class="mw-page-title-main">Meteor shower</span> Celestial event caused by streams of meteoroids entering Earths atmosphere

A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extremely high speeds on parallel trajectories. Most meteors are smaller than a grain of sand, so almost all of them disintegrate and never hit the Earth's surface. Very intense or unusual meteor showers are known as meteor outbursts and meteor storms, which produce at least 1,000 meteors an hour, most notably from the Leonids. The Meteor Data Centre lists over 900 suspected meteor showers of which about 100 are well established. Several organizations point to viewing opportunities on the Internet. NASA maintains a daily map of active meteor showers.

<span class="mw-page-title-main">Perseids</span> Prolific meteor shower associated with the comet Swift-Tuttle

The Perseids are a prolific meteor shower associated with the comet Swift–Tuttle. The meteors are called the Perseids because they appear from the general direction of the constellation Perseus and in more modern times have a radiant bordering on Cassiopeia and Camelopardalis.

The Quadrantids (QUA) are a meteor shower that peaks in early January and whose radiant lies in the constellation Boötes. The zenithal hourly rate (ZHR) of this shower can be as high as that of two other reliably rich meteor showers, the Perseids in August and the Geminids in December, yet Quadrantid meteors are not seen as often as those of the two other showers because the time frame of the peak is exceedingly narrow, sometimes lasting only hours. Moreover, the meteors are quite faint, with mean apparent magnitudes between 3.0 and 6.0.

<span class="mw-page-title-main">Eta Aquariids</span> Meteor shower

The Eta Aquariids are a meteor shower associated with Halley's Comet.

The Beta Taurids (β–Taurids) are an annual meteor shower belonging to a class of "daytime showers" that peak after sunrise. The Beta Taurids are best observed by radar and radio-echo techniques.

The Southern Delta Aquariids are a meteor shower visible from mid July to mid August each year with peak activity on 28 or 29 July. The Comet of origin is not known with certainty. Suspected candidate is Comet 96P Machholz. Earlier, it was thought to have originated from the Marsden and Kracht Sungrazing comets.

The Taurids are an annual meteor shower, associated with the comet Encke. The Taurids are actually two separate showers, with a Southern and a Northern component. The Southern Taurids originated from Comet Encke, while the Northern Taurids originated from the asteroid 2004 TG10, possibly a large fragment of Encke due to its similar orbital parameters. They are named after their radiant point in the constellation Taurus, where they are seen to come from in the sky. Because of their occurrence in late October and early November, they are also called Halloween fireballs.

<span class="mw-page-title-main">Phoenicids</span>

The Phoenicids are a minor meteor shower, first noticed by observers in New Zealand, Australia, the Indian Ocean, and South Africa during an outburst of approximately 100 meteors an hour that occurred during December 1956. Like other meteor showers, the Phoenicids get their name from the location of their radiant, which is in the constellation Phoenix. They are active from 29 November to 9 December, with a peak occurring around 5/6 December each year, and are best seen from the Southern Hemisphere.

<span class="mw-page-title-main">Comet IRAS–Araki–Alcock</span> Comet

Comet IRAS–Araki–Alcock is a long-period comet that, in 1983, made the closest known approach to Earth of any comet in 200 years, at a distance of about 0.0312 AU. The comet was named after its discoverers – the Infrared Astronomical Satellite and two amateur astronomers, George Alcock of the United Kingdom and Genichi Araki of Japan. Both men were schoolteachers by profession, although Alcock was retired. Alcock had made his discovery simply by observing through the window of his home, using binoculars. During the closest approach, the comet appeared as a circular cloud about the size of the full moon, having no discernible tail, and shining at a naked eye magnitude of 3–4. It swept across the sky at an angular speed of about 30 degrees per day. On May 11 the comet was detected on radar by Arecibo Observatory and Goldstone Solar System Radar making it the first comet detected by two different radar systems. A second detection was made by Goldstone on 14 May.

The Orionids meteor shower, often shortened to the Orionids, is the most prolific meteor shower associated with Halley's Comet. The Orionids are so-called because the point they appear to come from, called the radiant, lies in the constellation Orion, but they can be seen over a large area of the sky. The Orionids are an annual meteor shower which last approximately one week in late October. In some years, meteors may occur at rates of 50–70 per hour.

The Andromedids meteor shower is associated with Biela's Comet, the showers occurring as Earth passes through old streams left by the comet's tail. The comet was observed to have broken up by 1846; further drift of the pieces by 1852 suggested the moment of breakup was in either 1842 or early 1843, when the comet was near Jupiter. The breakup led to particularly spectacular showers in subsequent cycles.

<span class="mw-page-title-main">Tau Herculids</span> Annual meteor shower in May/June

The Tau Herculids are a meteor shower that when discovered in 1930 appeared to originate from the star Tau Herculis. The parent comet of the Tau Herculids is periodic comet Schwassmann-Wachmann 3 with a 5.4 year orbital period. This meteor shower occurs from May 19 - June 19. The meteor shower was first observed by the Kwasan Observatory in Kyoto, Japan in May 1930. The Tau Herculids' average radiant was α=236°, δ=+41°. Due to orbital perturbations of the meteor streams by Jupiter, 2022 activity will have a radiant of R.A. = 13:56 (209), Decl. = +28. The meteors are relatively slow moving making atmospheric entry at around 16 km/s (36,000 mph).

<span class="mw-page-title-main">Delta Aurigids</span>

Delta Aurigids, or DAU is a minor reliable meteor shower that takes place from October 10 to 18. The peak of the shower is on October 11, with two meteors per hour. The velocity is 143,000 mph.

<span class="mw-page-title-main">Leonis Minorids</span> Meteor shower

Leonis Minorids [sic] is a weak meteor shower that takes place from October 19 till October 27 each year, peaking on October 23. With a weak moon the meteor shower may be visible with the naked eye, however this meteor shower is best observed only from the Northern Hemisphere with telescopic plotting. This meteor shower is linked to comet C/1739 K1 and radiates from the constellation Leo Minor, which is a faint constellation north of Leo. The meteor shower often only produces 2 meteors an hour. The meteors usually pass at an average speed of 62 kilometers per second.

<span class="mw-page-title-main">Cameras for All-Sky Meteor Surveillance</span> Meteor shower observatory

CAMS is a NASA-sponsored international project that tracks and triangulates meteors during night-time video surveillance in order to map and monitor meteor showers. Data processing is housed at the Carl Sagan Center of the SETI Institute in California, USA. Goal of CAMS is to validate the International Astronomical Union's Working List of Meteor Showers, discover new meteor showers, and predict future meteor showers.