Karger's algorithm

Last updated
A graph and two of its cuts. The dotted line in red is a cut with three crossing edges. The dashed line in green is a min-cut of this graph, crossing only two edges. Min cut example.svg
A graph and two of its cuts. The dotted line in red is a cut with three crossing edges. The dashed line in green is a min-cut of this graph, crossing only two edges.

In computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first published in 1993. [1]

Contents

The idea of the algorithm is based on the concept of contraction of an edge in an undirected graph . Informally speaking, the contraction of an edge merges the nodes and into one, reducing the total number of nodes of the graph by one. All other edges connecting either or are "reattached" to the merged node, effectively producing a multigraph. Karger's basic algorithm iteratively contracts randomly chosen edges until only two nodes remain; those nodes represent a cut in the original graph. By iterating this basic algorithm a sufficient number of times, a minimum cut can be found with high probability.

The global minimum cut problem

A cut in an undirected graph is a partition of the vertices into two non-empty, disjoint sets . The cutset of a cut consists of the edges between the two parts. The size (or weight) of a cut in an unweighted graph is the cardinality of the cutset, i.e., the number of edges between the two parts,

There are ways of choosing for each vertex whether it belongs to or to , but two of these choices make or empty and do not give rise to cuts. Among the remaining choices, swapping the roles of and does not change the cut, so each cut is counted twice; therefore, there are distinct cuts. The minimum cut problem is to find a cut of smallest size among these cuts.

For weighted graphs with positive edge weights the weight of the cut is the sum of the weights of edges between vertices in each part

which agrees with the unweighted definition for .

A cut is sometimes called a “global cut” to distinguish it from an “- cut” for a given pair of vertices, which has the additional requirement that and . Every global cut is an - cut for some . Thus, the minimum cut problem can be solved in polynomial time by iterating over all choices of and solving the resulting minimum - cut problem using the max-flow min-cut theorem and a polynomial time algorithm for maximum flow, such as the push-relabel algorithm, though this approach is not optimal. Better deterministic algorithms for the global minimum cut problem include the Stoer–Wagner algorithm, which has a running time of . [2]

Contraction algorithm

The fundamental operation of Karger’s algorithm is a form of edge contraction. The result of contracting the edge is a new node . Every edge or for to the endpoints of the contracted edge is replaced by an edge to the new node. Finally, the contracted nodes and with all their incident edges are removed. In particular, the resulting graph contains no self-loops. The result of contracting edge is denoted .

Edge contraction in a multigraph.svg

The contraction algorithm repeatedly contracts random edges in the graph, until only two nodes remain, at which point there is only a single cut.

The key idea of the algorithm is that it is far more likely for non min-cut edges than min-cut edges to be randomly selected and lost to contraction, since min-cut edges are usually vastly outnumbered by non min-cut edges. Subsequently, it is plausible that the min-cut edges will survive all the edge contraction, and the algorithm will correctly identify the min-cut edge.

Successful run of Karger's algorithm on a 10-vertex graph. The minimum cut has size 3. Single run of Karger's Mincut algorithm.svg
Successful run of Karger’s algorithm on a 10-vertex graph. The minimum cut has size 3.
procedure contract():    while        choose  uniformly at random        return the only cut in 

When the graph is represented using adjacency lists or an adjacency matrix, a single edge contraction operation can be implemented with a linear number of updates to the data structure, for a total running time of . Alternatively, the procedure can be viewed as an execution of Kruskal’s algorithm for constructing the minimum spanning tree in a graph where the edges have weights according to a random permutation . Removing the heaviest edge of this tree results in two components that describe a cut. In this way, the contraction procedure can be implemented like Kruskal’s algorithm in time .

The random edge choices in Karger's algorithm correspond to an execution of Kruskal's algorithm on a graph with random edge ranks until only two components remain. Spanning tree interpretation of Karger's algorithm.svg
The random edge choices in Karger’s algorithm correspond to an execution of Kruskal’s algorithm on a graph with random edge ranks until only two components remain.

The best known implementations use time and space, or time and space, respectively. [1]

Success probability of the contraction algorithm

In a graph with vertices, the contraction algorithm returns a minimum cut with polynomially small probability . Recall that every graph has cuts (by the discussion in the previous section), among which at most can be minimum cuts. Therefore, the success probability for this algorithm is much better than the probability for picking a cut at random, which is at most .

For instance, the cycle graph on vertices has exactly minimum cuts, given by every choice of 2 edges. The contraction procedure finds each of these with equal probability.

To further establish the lower bound on the success probability, let denote the edges of a specific minimum cut of size . The contraction algorithm returns if none of the random edges deleted by the algorithm belongs to the cutset . In particular, the first edge contraction avoids , which happens with probability . The minimum degree of is at least (otherwise a minimum degree vertex would induce a smaller cut where one of the two partitions contains only the minimum degree vertex), so . Thus, the probability that the contraction algorithm picks an edge from is

The probability that the contraction algorithm on an -vertex graph avoids satisfies the recurrence , with , which can be expanded as

Repeating the contraction algorithm

10 repetitions of the contraction procedure. The 5th repetition finds the minimum cut of size 3. 10 repetitions of Karger's contraction procedure.svg
10 repetitions of the contraction procedure. The 5th repetition finds the minimum cut of size 3.

By repeating the contraction algorithm times with independent random choices and returning the smallest cut, the probability of not finding a minimum cut is

The total running time for repetitions for a graph with vertices and edges is .

Karger–Stein algorithm

An extension of Karger’s algorithm due to David Karger and Clifford Stein achieves an order of magnitude improvement. [3]

The basic idea is to perform the contraction procedure until the graph reaches vertices.

procedure contract(, ):    while        choose  uniformly at random        return

The probability that this contraction procedure avoids a specific cut in an -vertex graph is

This expression is approximately and becomes less than around . In particular, the probability that an edge from is contracted grows towards the end. This motivates the idea of switching to a slower algorithm after a certain number of contraction steps.

procedure fastmincut():    if:        return contract(, )    else:         contract(, )         contract(, )        return min{fastmincut(), fastmincut()}

Analysis

The contraction parameter is chosen so that each call to contract has probability at least 1/2 of success (that is, of avoiding the contraction of an edge from a specific cutset ). This allows the successful part of the recursion tree to be modeled as a random binary tree generated by a critical Galton–Watson process, and to be analyzed accordingly. [3]

The probability that this random tree of successful calls contains a long-enough path to reach the base of the recursion and find is given by the recurrence relation

with solution . The running time of fastmincut satisfies

with solution . To achieve error probability , the algorithm can be repeated times, for an overall running time of . This is an order of magnitude improvement over Karger’s original algorithm. [3]

Improvement bound

To determine a min-cut, one has to touch every edge in the graph at least once, which is time in a dense graph. The Karger–Stein's min-cut algorithm takes the running time of , which is very close to that.

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

<span class="mw-page-title-main">Minimum spanning tree</span> Least-weight tree connecting graph vertices

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible. More generally, any edge-weighted undirected graph has a minimum spanning forest, which is a union of the minimum spanning trees for its connected components.

A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output are random variables.

<span class="mw-page-title-main">Euclidean minimum spanning tree</span> Shortest network connecting points

A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.

<span class="mw-page-title-main">Connectivity (graph theory)</span> Basic concept of graph theory

In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network.

<span class="mw-page-title-main">Maximal independent set</span> Independent set which is not a subset of any other independent set

In graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property.

<span class="mw-page-title-main">Giant component</span> Large connected component of a random graph

In network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices.

<span class="mw-page-title-main">Minimum cut</span> Partition of a graph by removing fewest possible edges

In graph theory, a minimum cut or min-cut of a graph is a cut that is minimal in some metric.

In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed.

<span class="mw-page-title-main">Conductance (graph theory)</span> A mixing property of Markov chains and graphs

In theoretical computer science, graph theory, and mathematics, the conductance is a parameter of a Markov chain that is closely tied to its mixing time, that is, how rapidly the chain converges to its stationary distribution, should it exist. Equivalently, the conductance can be viewed as a parameter of a directed graph, in which case it can be used to analyze how quickly random walks in the graph converge.

<span class="mw-page-title-main">Maximum cut</span> Problem of finding a maximum cut in a graph

In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.

In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.

Reservoir sampling is a family of randomized algorithms for choosing a simple random sample, without replacement, of k items from a population of unknown size n in a single pass over the items. The size of the population n is not known to the algorithm and is typically too large for all n items to fit into main memory. The population is revealed to the algorithm over time, and the algorithm cannot look back at previous items. At any point, the current state of the algorithm must permit extraction of a simple random sample without replacement of size k over the part of the population seen so far.

In mathematics and computer science, the method of conditional probabilities is a systematic method for converting non-constructive probabilistic existence proofs into efficient deterministic algorithms that explicitly construct the desired object.

The expected linear time MST algorithm is a randomized algorithm for computing the minimum spanning forest of a weighted graph with no isolated vertices. It was developed by David Karger, Philip Klein, and Robert Tarjan. The algorithm relies on techniques from Borůvka's algorithm along with an algorithm for verifying a minimum spanning tree in linear time. It combines the design paradigms of divide and conquer algorithms, greedy algorithms, and randomized algorithms to achieve expected linear performance.

Approximate max-flow min-cut theorems are mathematical propositions in network flow theory. Approximate max-flow min-cut theorems deal with the relationship between maximum flow rate ("max-flow") and minimum cut ("min-cut") in a multi-commodity flow problem. The theorems have enabled the development of approximation algorithms for use in graph partition and related problems.

<span class="mw-page-title-main">Stoer–Wagner algorithm</span> Recursive algorithm in graph theory

In graph theory, the Stoer–Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted graphs with non-negative weights. It was proposed by Mechthild Stoer and Frank Wagner in 1995. The essential idea of this algorithm is to shrink the graph by merging the most intensive vertices, until the graph only contains two combined vertex sets. At each phase, the algorithm finds the minimum - cut for two vertices and chosen at its will. Then the algorithm shrinks the edge between and to search for non - cuts. The minimum cut found in all phases will be the minimum weighted cut of the graph.

In graph theory a minimum spanning tree (MST) of a graph with and is a tree subgraph of that contains all of its vertices and is of minimum weight.

In mathematics, dependent random choice is a probabilistic technique that shows how to find a large set of vertices in a dense graph such that every small subset of vertices has many common neighbors. It is a useful tool to embed a graph into another graph with many edges. Thus it has its application in extremal graph theory, additive combinatorics and Ramsey theory.

A central problem in algorithmic graph theory is the shortest path problem. One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph. There are classical sequential algorithms which solve this problem, such as Dijkstra's algorithm. In this article, however, we present two parallel algorithms solving this problem.

References

  1. 1 2 Karger, David (1993). "Global Min-cuts in RNC and Other Ramifications of a Simple Mincut Algorithm". Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms.
  2. Stoer, M.; Wagner, F. (1997). "A simple min-cut algorithm". Journal of the ACM. 44 (4): 585. doi: 10.1145/263867.263872 . S2CID   15220291.
  3. 1 2 3 Karger, David R.; Stein, Clifford (1996). "A new approach to the minimum cut problem" (PDF). Journal of the ACM. 43 (4): 601. doi:10.1145/234533.234534. S2CID   5385337.