Katayamalite

Last updated
Katayamalite
Katayamalite.jpg
General
Category Mineral
Formula
(repeating unit)
KLi3Ca7Ti2(SiO3)12(OH)2
IMA symbol Kyl [1]
Strunz classification 9.CJ.25
Dana classification61.01.04.02
Crystal system Monoclinic
Crystal class Prismatic
H-M symbol: 2/m
Space group B2/b
Unit cell 3,179.12
Identification
ColorWhite
Crystal habit Tabular, common twinning
Cleavage Perfect on {001}
Mohs scale hardness3.5 - 4
Luster Vitreous, pearly
Streak White
Density 2.91
Optical propertiesBiaxial (+)
Refractive index nα = 1.670
nβ = 1.671
nγ = 1.677
2V angle Measured: 32
Calculated: 46
Dispersion Strong
r > v
Ultraviolet fluorescence brilliant blue-white under SW
Other characteristics Radioactive.svg Radioactive

Katayamalite is a cyclosilicate mineral that was named in honor of mineralogist and professor Nobuo Katayama. It was approved in 1982 by the International Mineralogical Association, and was first published a year later. [2]

Contents

Relation with baratovite

Katayamalite is the hydroxyl analogue of baratovite and the hydroxyl end member of the series, [3] but was first described as a fluor-dominant mineral. Some scientists claim it to be rather hydroxyl- than fluor dominant, which would make baratovite isostructural with it. It would make the two minerals the same species, with baratovite having priority. As the case hadn't been clarified, katayamalite remains an IMA-approved mineral until this day. [2]

Chemical properties

Katayamalite mainly consists of oxygen (43.16%), silicon (24.25%), calcium (20.18%), but otherwise contains titanium (6.89%), potassium (2.81%), lithium (1.50%). It has trace amounts of fluorine (0.68%), sodium (0.41%) and hydrogen (0.11%) in its composition as well. It has a barely detectable radioactivity, 40.21 measured in Gamma Ray American Petroleum Institute Units. The concentration of it in percentage is 2.49. It was originally described as having a triclinic symmetry in 1985, but the structure was redetermined to be monoclinic in 2013. It has a radiant blue-white fluorescence, and platy morphology. [2]

Occurrence

The mineral is associated with sugilite, albite and aegirine. [2] Crystals are usually twinned. This mineral can be found in aegirine syenite. [3]

Related Research Articles

<span class="mw-page-title-main">Eudialyte</span> Cyclosilicate mineral

Eudialyte, whose name derives from the Greek phrase Εὖ διάλυτος, eu dialytos, meaning "well decomposable", is a somewhat rare, nine member ring cyclosilicate mineral, which forms in alkaline igneous rocks, such as nepheline syenites. Its name alludes to its ready solubility in acid.

<span class="mw-page-title-main">Arfvedsonite</span> Sodium amphibole mineral

Arfvedsonite is a sodium amphibole mineral with composition: [Na][Na2][(Fe2+)4Fe3+][(OH)2|Si8O22]. It crystallizes in the monoclinic prismatic crystal system and typically occurs as greenish black to bluish grey fibrous to radiating or stellate prisms.

<span class="mw-page-title-main">Aegirine</span> Member of the clinopyroxene group of inosilicate mineral

Aegirine is a member of the clinopyroxene group of inosilicate minerals. Aegirine is the sodium endmember of the aegirine-augite series. Aegirine has the chemical formula NaFeSi2O6 in which the iron is present as Fe3+. In the aegirine-augite series the sodium is variably replaced by calcium with iron(II) and magnesium replacing the iron(III) to balance the charge. Aluminium also substitutes for the iron(III). Acmite is a fibrous, green-colored variety.

<span class="mw-page-title-main">Herderite</span> Phosphate mineral

Herderite is a phosphate mineral belonging to the apatite, phosphate group, with formula CaBe(PO4)(F,OH). It forms monoclinic crystals, often twinned and variable in colour from colourless through yellow to green. It forms a series with the more common hydroxylherderite, which has more hydroxyl ion than fluoride.

<span class="mw-page-title-main">Charoite</span>

CharoiteK(Ca,Na)
2
Si
4
O
10
(OH,F)•H
2
O
is a rare silicate mineral, first described in 1978. It was believed to be named after the Chara River, but due to the river being 70 km away from its discovery place, now it is believed to be named after the Russian word chary, meaning magic or charms. When it was discovered, it was thought to be a fake, dyed purple to give it its striking appearance.

<span class="mw-page-title-main">Abenakiite-(Ce)</span> Cyclosilicate mineral

Abenakiite-(Ce) is a mineral of sodium, cerium, neodymium, lanthanum, praseodymium, thorium, samarium, oxygen, sulfur, carbon, phosphorus, and silicon with a chemical formula Na26Ce6(SiO3)6(PO4)6(CO3)6(S4+O2)O. The silicate groups may be given as the cyclic Si6O18 grouping. The mineral is named after the Abenaki, an Algonquian Indian tribe of New England. Its Mohs scale rating is 4 to 5.

Aeschynite-(Nd) is a rare earth mineral of neodymium, cerium, calcium, thorium, titanium, niobium, oxygen, and hydrogen with the chemical formula (Nd,Ce,Ca,Th)(Ti,Nb)2(O,OH)6. Its name comes from the Greek word for "shame". Its Mohs scale rating is 5 to 6. It is a member of the hydroxide minerals.

<span class="mw-page-title-main">Sugilite</span>

Sugilite ( SOO-gə-lyte, -⁠jee-) is a relatively rare pink to purple cyclosilicate mineral with the complex chemical formula KNa2(Fe, Mn, Al)2Li3Si12O30. Sugilite crystallizes in the hexagonal system with prismatic crystals. The crystals are rarely found and the form is usually massive. It has a Mohs hardness of 5.5–6.5 and a specific gravity of 2.75–2.80. It is mostly translucent. Sugilite was first described in 1944 by the Japanese petrologist Ken-ichi Sugi (1901–1948) for an occurrence on Iwagi Islet, Japan, where it is found in an aegirine syenite intrusive stock. It is found in a similar environment at Mont Saint-Hilaire, Quebec, Canada. In the Wessels mine in Northern Cape Province of South Africa, sugilite is mined from a strata-bound manganese deposit. It is also reported from Liguria and Tuscany, Italy; New South Wales, Australia and Madhya Pradesh, India.

<span class="mw-page-title-main">Lorenzenite</span> Sodium titanium silicate mineral

Lorenzenite is a rare sodium titanium silicate mineral with the formula Na2Ti2Si2O9 It is an orthorhombic mineral, variously found as colorless, grey, pinkish, or brown crystals.

<span class="mw-page-title-main">Arctite</span> Colourless mineral found in the Kola Peninsula northern Russia

Arctite (Na2Ca4(PO4)3F) is a colourless mineral found in the Kola Peninsula northern Russia. Its IMA symbol is Arc. It has a Mohs hardness of 5 and has a specific gravity of 3.13. Arctite is transparent with a vitreous lustre. Arctite has a perfect cleavage and a trigonal crystal system. It is also a naturally occurring antiperovskite.

<span class="mw-page-title-main">Neptunite</span>

Neptunite is a silicate mineral with the formula KNa2Li(Fe2+, Mn2+)2Ti2Si8O24. With increasing manganese it forms a series with mangan-neptunite. Watatsumiite is the variety with vanadium replacing the titanium in the formula.

<span class="mw-page-title-main">Fluor-buergerite</span>

Fluor-buergerite, originally named buergerite, is a mineral species belonging to the tourmaline group. It was first described for an occurrence in rhyolitic cavities near Mexquitic, San Luis Potosi, Mexico. It was approved as a mineral in 1966 by the IMA and named in honor of Martin J. Buerger (1903–1986), professor of mineralogy at the Massachusetts Institute of Technology. It has also been reported from Minas Gerais, Brazil, and the Central Bohemia Region of the Czech Republic.

<span class="mw-page-title-main">Eosphorite</span> Phosphate mineral

Eosphorite is a brown (occasionally pink) manganese hydrous phosphate mineral with chemical formula: MnAl(PO4)(OH)2·H2O. It is used as a gemstone.

<span class="mw-page-title-main">Narsarsukite</span>

Narsarsukite is a rare silicate mineral with either the chemical formula Na2(Ti,Fe3+)Si4(O,F)11 or Na4(Ti,Fe)4[Si8O20](O,OH,F)4.

<span class="mw-page-title-main">Andrianovite</span> Rare cyclosilicate mineral

Andrianovite is a very rare mineral of the eudialyte group, with formula Na12(K,Sr,Ce)6Ca6(Mn,Fe)3Zr3NbSi(Si3O9)2(Si9O27)2O(O,H2O,OH)5. The original formula was extended to show the presence of cyclic silicate groups and silicon at the M4 site, according to the nomenclature of eudialyte group. Andrianovite is unique among the eudialyte group in being potassium-rich (other eudialyte-group species with essential K are davinciite and rastsvetaevite). It is regarded as potassium analogue of kentbrooksite, but it also differs from it in being oxygen-dominant rather than fluorine-dominant. Also, the coordination number of Na in this representative is enlarged from 7 to 9. The name of the mineral honors Russian mathematician and crystallographer Valerii Ivanovich Andrianov.

<span class="mw-page-title-main">Ferrokentbrooksite</span> Mineral of the eudialyte group

Ferrokentbrooksite is a moderately rare mineral of the eudialyte group, with formula Na15Ca6(Fe,Mn)3Zr3NbSi25O73(O,OH,H2O)3(Cl,F,OH)2. The original formula was extended form to show the presence of cyclic silicate groups and presence of silicon at the M4 site, according to the nomenclature of eudialyte group. As suggested by its name, it is the (ferrous) iron analogue of kentbrooksite. When compared to the latter, it is also chlorine-dominant instead of being fluorine-dominant. The original (holotype) material is also relatively enriched in rare earth elements, including cerium and yttrium.

<span class="mw-page-title-main">Kentbrooksite</span> Mineral of the eudialyte group

Kentbrooksite is a moderately rare mineral of the eudialyte group, with chemical formula (Na,REE)15(Ca,REE)6Mn3Zr3NbSi[(Si9O27)2(Si3O9)2O2]F2·2H2O. This extended formula shows the presence of cyclic silicate groups and dominance of Si at the M4 site, according to the nomenclature of the eudialyte group. The characteristic features of kentbrooksite, that make it different from eudialyte are: (1) dominancy of fluorine (the only currently known example among the whole group), (2) dominancy of manganese, and (3) dominancy of niobium. Trace hafnium and magnesium are also reported. Kentbrooksite is relatively common when compared to most other species of the group.

Mogovidite is a very rare mineral of the eudialyte group, with formula Na9(Ca,Na)6Ca6(Fe3+,Fe2+)2Zr3[]Si(Si9O27)2(Si3O9)2(CO3)(OH,H2O)4. The formula given is based on the original one but extended to show the presence of cyclic silicate groups. It is similar to feklichevite, differing from it in the presence of essential vacancies and carbonate group. Another specific feature is the dominance of ferric iron - a feature shared with other eudialyte-group members, including feklichevite, fengchengite, golyshevite and ikranite. Similarly to golyshevite, it is calcium-dominant, however on three sites: M(1), N(3) and N(4). It has a molecular mass of 3,066.24 gm.

<span class="mw-page-title-main">Baratovite</span> Cyclosilicate mineral

Baratovite is a very rare cyclosilicate mineral named after Rauf Baratovich Baratov from Tajikistan. It was discovered in 1974 at Dara-Pioz glacier, Tajikistan, and was approved by the International Mineralogical Association only a year later in 1975. The glacier gives home to 133 valid species, and is the type locality of 33 minerals, one of which is baratovite.

Tsilaisite is a manganese rich variety of elbaite tourmaline. It is also known as Tsilaizite. Tsilaisite is related Fluor-tsilaisite. The gem is named after the location it was first found.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 "Katayamalite". www.mindat.org. Retrieved 2021-08-08.
  3. 1 2 "Katayamalite Mineral Data". webmineral.com. Retrieved 2021-08-08.