Baratovite

Last updated
Baratovite
Baratovite-266512.jpg
General
Category Mineral
Formula
(repeating unit)
KCa7(Ti,Zr)2Li3Si12O36F2
IMA symbol Btv [1]
Strunz classification 9.CJ.25
Dana classification61.1.4.2
Crystal system Monoclinic
Crystal class Prismatic
H-M symbol: 2/m
Space group C2/c
Unit cell 3,185.91
Identification
ColorWhite, colorles, pink
Twinning Common on {001}
Cleavage Perfect on {001}
Fracture Conchoidal
Tenacity Brittle
Mohs scale hardness5 - 6
Luster Vitreous, pearly
Streak White
Specific gravity 2.92
Density 2.92
Optical propertiesBiaxial (+)
Refractive index nα = 1.674
nβ = 1.671
nγ = 1.666
Birefringence 0.008
2V angle 60°
Dispersion Strong
r > v
Common impuritiesFe, Nb, Mn, Na
Other characteristics Radioactive.svg Radioactive

Baratovite is a very rare cyclosilicate mineral named after Rauf Baratovich Baratov from Tajikistan. It was discovered in 1974 at Dara-Pioz glacier, Tajikistan, [2] and was approved by the International Mineralogical Association only a year later in 1975. [3] The glacier gives home to 133 valid species, and is the type locality of 33 minerals, one of which is baratovite. [2]

Contents

Properties

It's a titanium rich variant of aleksandrovite. Although it is considered to be rich in titanium, and the fact it is the fluor-dominant analog of katayamalite, [2] some mineralogist consider baratovite to be a hydroxyl-, rather than fluorine-dominant. In this case, it would make katayamalite the same species, as baratovite is isostructural with it. Common impurities include magnesium, natrium, iron and niobium. Baratovite was originally described to have a 3 - 3.5 hardness on the Mohs scale, which was later corrected to 5 - 6. It has a perfect cleavage in two directions crossing basal plane, in {001}, and the luster of the mineral is pearly on the cleavages. [3] It consists mainly of oxygen (40.88%), silicon (23.92%) and calcium (19.91%), but also contains titanium (5.10%), zirconium (3.24%), potassium (2.78%), fluorine (2.70%) and lithium (1.48%). It has a barely detectable, 39.51 radioactivity, measured in Gamma Ray American Petroleum Institute Units. The concentration per GRapi units in percentage is 2.53. It is the end member of the series. [4] The mineral also shows fluorescent properties. Inspected under short wavelength ultraviolet light, it has a blueish white fluorescence. [5] The mineral is similar to muscovite, but can be distinguished by its fluorescence. Baratovite can either be colorless, white, or have pinkish tints. It forms platy deposits up to 5 cms that are nacre-white, and it grows in patchy granular aggregates. [2] The mineral is monoclinic, probably pseudo-hexagonal, which is shown by the single crystal X-ray study. When inspected under a microscope, it can be clearly seen that the mineral is perfectly homogeneous. The mineral has an extremely low anisotropy.

Occurrences

It's a type locality of Dara-Pioz glacier, Tajikistan, but it also occurs at the Iwagi islet, Japan. It occurs as an accessory mineral. It occurs in the form of veinlets in quartzes, albites and aegirines, and in albitites in syenites. Minerals associated with baratovite vary between localities.

The associated minerals of baratovite specimens found in Dara-i-Pioz massif, Tajikistan are: quartz, albite, ekanite, titanite, aegirine and miserite.

Associated minerals of biotite from Iwagi islet, Japan are: apatite, zircon, pectolite, sugilite, allanite, titanite, aegirine and albite. [2]

Related Research Articles

<span class="mw-page-title-main">Amblygonite</span>

Amblygonite is a fluorophosphate mineral, (Li,Na)AlPO4(F,OH), composed of lithium, sodium, aluminium, phosphate, fluoride and hydroxide. The mineral occurs in pegmatite deposits and is easily mistaken for albite and other feldspars. Its density, cleavage and flame test for lithium are diagnostic. Amblygonite forms a series with montebrasite, the low fluorine endmember. Geologic occurrence is in granite pegmatites, high-temperature tin veins, and greisens. Amblygonite occurs with spodumene, apatite, lepidolite, tourmaline, and other lithium-bearing minerals in pegmatite veins. It contains about 10% lithium, and has been utilized as a source of lithium. The chief commercial sources have historically been the deposits of California and France.

<span class="mw-page-title-main">Titanite</span> Nesosilicate mineral

Titanite, or sphene (from the Greek sphenos (σφηνώ), meaning wedge), is a calcium titanium nesosilicate mineral, CaTiSiO5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly replaced by thorium.

<span class="mw-page-title-main">Nepheline syenite</span> Holocrystalline plutonic rock

Nepheline syenite is a holocrystalline plutonic rock that consists largely of nepheline and alkali feldspar. The rocks are mostly pale colored, grey or pink, and in general appearance they are not unlike granites, but dark green varieties are also known. Phonolite is the fine-grained extrusive equivalent.

<span class="mw-page-title-main">Astrophyllite</span> Hydrous potassium iron titanium silicate mineral

Astrophyllite is a very rare, brown to golden-yellow hydrous potassium iron titanium silicate mineral. Belonging to the astrophyllite group, astrophyllite may be classed either as an inosilicate, phyllosilicate, or an intermediate between the two. It forms an isomorphous series with kupletskite, to which it is visually identical and often intimately associated. Astrophyllite is of interest primarily to scientists and collectors.

<span class="mw-page-title-main">Benitoite</span> Barium titanium cyclosilicate

Benitoite is a rare blue barium titanium cyclosilicate, found in hydrothermally altered serpentinite. It forms in low temperature, high pressure environments typical of subduction zones at convergent plate boundaries. Benitoite fluoresces under short wave ultraviolet light, appearing bright blue to bluish white in color. The more rarely seen clear to white benitoite crystals fluoresce red under long-wave UV light.

<span class="mw-page-title-main">Aegirine</span> Member of the clinopyroxene group of inosilicate mineral

Aegirine is a member of the clinopyroxene group of inosilicate minerals. Aegirine is the sodium endmember of the aegirine-augite series. Aegirine has the chemical formula NaFeSi2O6 in which the iron is present as Fe3+. In the aegirine-augite series the sodium is variably replaced by calcium with iron(II) and magnesium replacing the iron(III) to balance the charge. Aluminium also substitutes for the iron(III). Acmite is a fibrous, green-colored variety.

<span class="mw-page-title-main">Normandite</span>

Normandite is a brittle orange brown sorosilicate mineral discovered in 1997 by Charles Normand, of Montreal. Normandite occurs in Khibiny Massif, Kola, Russia; in Poudrette quarry, Mont-Saint-Hilaire, Quebec and Tenerife, Canary Islands. It is found in nepheline syenite and in miarolitic cavities in nepheline syenite, associated with nepheline, albite, microcline, aegirine, natrolite, catapleiite, kupletskite, eudialyte, cancrinite, villiaumite, rinkite, and donnayite-(Y).

<span class="mw-page-title-main">Eucryptite</span>

Eucryptite is a lithium bearing aluminium silicate mineral with formula LiAlSiO4. It crystallizes in the trigonal - rhombohedral crystal system. It typically occurs as granular to massive in form and may pseudomorphically replace spodumene. It has a brittle to conchoidal fracture and indistinct cleavage. It is transparent to translucent and varies from colorless to white to brown. It has a Mohs hardness of 6.5 and a specific gravity of 2.67. Optically it is uniaxial positive with refractive index values of nω = 1.570 - 1.573 and nε = 1.583 - 1.587.

<span class="mw-page-title-main">Agrellite</span>

Agrellite (NaCa2Si4O10F) is a rare triclinic inosilicate mineral with four-periodic single chains of silica tetrahedra.

<span class="mw-page-title-main">Zektzerite</span>

The mineral zektzerite is a member of the tuhualite group and was first found in 1966 by Seattle mineralogist Benjamin Bartlett "Bart" Cannon. It was discovered in the Willow creek basin below Silver Star mountain in miarolitic cavities within the alkaline arfvedsonite granite phase of the Golden Horn batholith, Okanogan County, Washington. It is named for Jack Zektzer, mathematician and mineral collector of Seattle, Washington.

<span class="mw-page-title-main">Yuksporite</span>

Yuksporite is a rare inosilicate mineral with double width, unbranched chains, and the complicated chemical formula K4(Ca,Na)14Sr2Mn(Ti,Nb)4(O,OH)4(Si6O17)2(Si2O7)3(H2O,OH)3. It contains the relatively rare elements strontium, titanium and niobium, as well as the commoner metallic elements potassium, calcium, sodium and manganese. As with all silicates, it contains groups of linked silicon and oxygen atoms, as well as some associated water molecules.

<span class="mw-page-title-main">Vlasovite</span>

Vlasovite is a rare inosilicate (chain silicate) mineral with sodium and zirconium, with the chemical formula Na2ZrSi4O11. It was discovered in 1961 at Vavnbed Mountain in the Lovozero Massif, in the Northern Region of Russia. The researchers who first identified it, R P Tikhonenkova and M E Kazakova, named it for Kuzma Aleksevich Vlasov (1905–1964), a Russian mineralogist and geochemist who studied the Lovozero massif, and who was the founder of the Institute of Mineralogy, Geochemistry, and Crystal Chemistry of Rare Elements, Moscow, Russia.

<span class="mw-page-title-main">Tuperssuatsiaite</span>

Tuperssuatsiaite is a rare clay mineral found in Greenland, Namibia and Brazil. It is a hydrated phyllosilicate of sodium and iron.

<span class="mw-page-title-main">Narsarsukite</span>

Narsarsukite is a rare silicate mineral with either the chemical formula Na2(Ti,Fe3+)Si4(O,F)11 or Na4(Ti,Fe)4[Si8O20](O,OH,F)4.

Carbokentbrooksite is a very rare mineral of the eudialyte group, with formula (Na,□)12(Na,Ce)3Ca6Mn3Zr3NbSiO(Si9O27)2(Si3O9)2(OH)3(CO3).H2O. The original formula was extended to show the presence of cyclic silicate groups and silicon at the M4 site, according to the nomenclature of eudialyte group. Carbokenbrooksite characterizes in being carbonate-rich (the other eudialyte-group species with essential carbonate are zirsilite-(Ce), golyshevite, and mogovidite). It is also sodium rich, being sodium equivalent of zirsilite-(Ce), with which it is intimately associated.

<span class="mw-page-title-main">Zirsilite-(Ce)</span>

Zirsilite-(Ce) is a very rare mineral of the eudialyte group, with formula (Na,□)12(Ce,Na)3Ca6Mn3Zr3NbSi(Si9O27)2(Si3O9)2O(OH)3(CO3)·H2O. The original formula was extended to show the presence of cyclic silicate groups and the presence of silicon at the M4 site, according to the nomenclature of the eudialyte group.according to the nomenclature of eudialyte group. Zirsilite-(Ce) differs from carbokentbrooksite in cerium-dominance over sodium only. Both minerals are intimately associated. The only other currently known representative of the eudialyte group having rare earth elements (in particular cerium, as suggested by the "-Ce)" Levinson suffix in the name) in dominance is johnsenite-(Ce).

<span class="mw-page-title-main">Ferrokentbrooksite</span> Mineral of the eudialyte group

Ferrokentbrooksite is a moderately rare mineral of the eudialyte group, with formula Na15Ca6(Fe,Mn)3Zr3NbSi25O73(O,OH,H2O)3(Cl,F,OH)2. The original formula was extended form to show the presence of cyclic silicate groups and presence of silicon at the M4 site, according to the nomenclature of eudialyte group. As suggested by its name, it is the (ferrous) iron analogue of kentbrooksite. When compared to the latter, it is also chlorine-dominant instead of being fluorine-dominant. The original (holotype) material is also relatively enriched in rare earth elements, including cerium and yttrium.

Johnsenite-(Ce) is a very rare mineral of the eudialyte group, with the chemical formula Na12(Ce,La,Sr,Ca,[ ])3Ca6Mn3Zr3WSi(Si9O27)2(Si3O9)2(CO3)O(OH,Cl)2. The original formula was extended to show the presence of both the cyclic silicate groups and silicon at the M4 site, according to the nomenclature of the eudialyte group. It is the third eudialyte-group mineral with essential tungsten, and second with essential rare earth elements. In fact, some niobium substitutes for tungsten in johnsenite-(Ce). Other characteristic feature is the presence of essential carbonate group, shared with carbokentbrooksite, golyshevite, mogovidite and zirsilite-(Ce).

Faizievite is a very rare mineral with the formula K2Na(Ca6Na)Ti4Li6Si24O66F2. This triclinic mineral is chemically related to baratovite and katayamalite. Faizievite is a single-locality mineral, coming from the moraine of the Darai-Pioz glacier, Tien Shan Mountains, Tajikistan. Alkaline rocks of this site are famous for containing numerous rare minerals, often enriched in boron, caesium, lithium, titanium, rare earth elements, barium, and others.

<span class="mw-page-title-main">Katayamalite</span> Pearly-white radioactive mineral

Katayamalite is a cyclosilicate mineral that was named in honor of mineralogist and professor Nobuo Katayama. It was approved in 1982 by the International Mineralogical Association, and was first published a year later.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 5 "Baratovite : ClassicGems.net". www.classicgems.net. Retrieved 2021-08-14.
  3. 1 2 "Baratovite". www.mindat.org. Retrieved 2021-07-26.
  4. "Baratovite Mineral Data". www.webmineral.com. Retrieved 2021-07-26.
  5. "Baratovite". National Gem Lab. 2017-03-03. Retrieved 2021-08-14.