A Kater's pendulum is a reversible free swinging pendulum invented by British physicist and army captain Henry Kater in 1817, published 29th January 1818 [1] for use as a gravimeter instrument to measure the local acceleration of gravity. Its advantage is that, unlike previous pendulum gravimeters, the pendulum's centre of gravity and center of oscillation do not have to be determined, allowing a greater accuracy. For about a century, until the 1930s, Kater's pendulum and its various refinements remained the standard method for measuring the strength of the Earth's gravity during geodetic surveys. It is now used only for demonstrating pendulum principles.
A pendulum can be used to measure the acceleration of gravity g because for narrow swings its period of swing T depends only on g and its length L: [2]
So by measuring the length L and period T of a pendulum, g can be calculated.
The Kater's pendulum consists of a rigid metal bar with two pivot points, one near each end of the bar. It can be suspended from either pivot and swung. It also has either an adjustable weight that can be moved up and down the bar, or one adjustable pivot, to adjust the periods of swing. In use, it is swung from one pivot, and the period timed, and then turned upside down and swung from the other pivot, and the period timed. The movable weight (or pivot) is adjusted until the two periods are equal. At this point the period T is equal to the period of an 'ideal' simple pendulum of length equal to the distance between the pivots. From the period and the measured distance L between the pivots, the acceleration of gravity can be calculated with great precision from the equation (1) above.
The acceleration due to gravity by Kater's pendulum is given by [3]
where T1 and T2 are the time periods of oscillations when it is suspended from K1 and K2 respectively and ℓ1 and ℓ2 are the distances of knife edges K1 and K2 from the center of gravity respectively.
The first person to discover that gravity varied over the Earth's surface was French scientist Jean Richer, who in 1671 was sent on an expedition to Cayenne, French Guiana, by the French Académie des Sciences, assigned the task of making measurements with a pendulum clock. Through the observations he made in the following year, Richer determined that the clock was 2+1⁄2 minutes per day slower than at Paris, or equivalently the length of a pendulum with a swing of one second there was 1+1⁄4 Paris lines, or 2.6 mm, shorter than at Paris. [4] [5] It was realized by the scientists of the day, and proven by Isaac Newton in 1687, that this was due to the fact that the Earth was not a perfect sphere but slightly oblate; it was thicker at the equator because of the Earth's rotation. Since the surface was farther from the Earth's center at Cayenne than at Paris, gravity was weaker there. After that discovery was made, freeswinging pendulums started to be used as precision gravimeters, taken on voyages to different parts of the world to measure the local gravitational acceleration. The accumulation of geographical gravity data resulted in more and more accurate models of the overall shape of the Earth.
Pendulums were so universally used to measure gravity that, in Kater's time, the local strength of gravity was usually expressed not by the value of the acceleration g now used, but by the length at that location of the seconds pendulum , a pendulum with a period of two seconds, so each swing takes one second. It can be seen from equation (1) that for a seconds pendulum, the length is simply proportional to g:
In Kater's time, the period T of pendulums could be measured very precisely by timing them with precision clocks set by the passage of stars overhead. Prior to Kater's discovery, the accuracy of g measurements was limited by the difficulty of measuring the other factor L, the length of the pendulum, accurately. L in equation (1) above was the length of an ideal mathematical 'simple pendulum' consisting of a point mass swinging on the end of a massless cord. However the 'length' of a real pendulum, a swinging rigid body, known in mechanics as a compound pendulum, is more difficult to define. In 1673 Dutch scientist Christiaan Huygens in his mathematical analysis of pendulums, Horologium Oscillatorium, showed that a real pendulum had the same period as a simple pendulum with a length equal to the distance between the pivot point and a point called the center of oscillation , which is located under the pendulum's center of gravity and depends on the mass distribution along the length of the pendulum. The problem was there was no way to find the location of the center of oscillation in a real pendulum accurately. It could theoretically be calculated from the shape of the pendulum if the metal parts had uniform density, but the metallurgical quality and mathematical abilities of the time didn't allow the calculation to be made accurately.
To get around this problem, most early gravity researchers, such as Jean Picard (1669), Charles Marie de la Condamine (1735), and Jean-Charles de Borda (1792) approximated a simple pendulum by using a metal sphere suspended by a light wire. If the wire had negligible mass, the center of oscillation was close to the center of gravity of the sphere. But even finding the center of gravity of the sphere accurately was difficult. In addition, this type of pendulum inherently wasn't very accurate. The sphere and wire didn't swing back and forth as a rigid unit, because the sphere acquired a slight angular momentum during each swing. Also the wire stretched elastically during the pendulum's swing, changing L slightly during the cycle.
However, in Horologium Oscillatorium, Huygens had also proved that the pivot point and the center of oscillation were interchangeable. That is, if any pendulum is suspended upside down from its center of oscillation, it has the same period of swing, and the new center of oscillation is the old pivot point. The distance between these two conjugate points was equal to the length of a simple pendulum with the same period.
As part of a committee appointed by the Royal Society in 1816 to reform British measures, Kater had been contracted by the House of Commons to determine accurately the length of the seconds pendulum in London. [6] He realized Huygens' principle could be used to find the center of oscillation, and so the length L, of a rigid (compound) pendulum. If a pendulum were hung upside down from a second pivot point that could be adjusted up and down on the pendulum's rod, and the second pivot were adjusted until the pendulum had the same period as it did when swinging right side up from the first pivot, the second pivot would be at the center of oscillation, and the distance between the two pivot points would be L.
Kater was not the first to have this idea. [7] [8] French mathematician Gaspard de Prony first proposed a reversible pendulum in 1800, but his work was not published until 1889. In 1811 Friedrich Bohnenberger again discovered it, but Kater independently invented it and was first to put it in practice.
Kater built a pendulum consisting of a brass rod about 2 meters long, 1+1⁄2 inches wide and one-eighth inch thick, with a weight (d) on one end. [1] [9] For a low friction pivot he used a pair of short triangular 'knife' blades attached to the rod. In use the pendulum was hung from a bracket on the wall, supported by the edges of the knife blades resting on flat agate plates. The pendulum had two of these knife blade pivots (a), facing one another, about a meter (40 in) apart, so that a swing of the pendulum took approximately one second when hung from each pivot.
Kater found that making one of the pivots adjustable caused inaccuracies, making it hard to keep the axis of both pivots precisely parallel. Instead he permanently attached the knife blades to the rod, and adjusted the periods of the pendulum by a small movable weight (b,c) on the pendulum shaft. Since gravity only varies by a maximum of 0.5% over the Earth, and in most locations much less than that, the weight only had to be adjusted slightly. Moving the weight toward one of the pivots decreased the period when hung from that pivot, and increased the period when hung from the other pivot. This also had the advantage that the precision measurement of the separation between the pivots only had to be made once.
To use, the pendulum was hung from a bracket on a wall, with the knife blade pivots supported on two small horizontal agate plates, in front of a precision pendulum clock to time the period. It was swung first from one pivot, and the oscillations timed, then turned upside down and swung from the other pivot, and the oscillations timed again. The small weight (b) was adjusted with the adjusting screw, and the process repeated until the pendulum had the same period when swung from each pivot. By putting the measured period T, and the measured distance between the pivot blades L, into the period equation (1), g could be calculated very accurately.
Kater performed 12 trials. [1] He measured the period of his pendulum very accurately using the clock pendulum by the method of coincidences; timing the interval between the coincidences when the two pendulums were swinging in synchronism. He measured the distance between the pivot blades with a microscope comparator, to an accuracy of 10−4 in. (2.5 μm). As with other pendulum gravity measurements, he had to apply small corrections to the result for a number of variable factors:
He gave his result as the length of the seconds pendulum. After corrections, he found that the mean length of the solar seconds pendulum at London, at sea level, at 62 °F (17 °C), swinging in vacuum, was 39.1386 inches. This is equivalent to a gravitational acceleration of 9.81158 m/s2. The largest variation of his results from the mean was 0.00028 inches (7.1 μm). This represented a precision of gravity measurement of 0.7×10−5 (7 milligals).
In 1824, the British Parliament made Kater's measurement of the seconds pendulum the official backup standard of length for defining the yard if the yard prototype was destroyed. [10] [11] [12] [13]
The large increase in gravity measurement accuracy made possible by Kater's pendulum established gravimetry as a regular part of geodesy. To be useful, it was necessary to find the exact location (latitude and longitude) of the 'station' where a gravity measurement was taken, so pendulum measurements became part of surveying. Kater's pendulums were taken on the great historic geodetic surveys of much of the world that were being done during the 19th century. In particular, Kater's pendulums were used in the Great Trigonometric Survey of India.
Reversible pendulums remained the standard method used for absolute gravity measurements until they were superseded by free-fall gravimeters in the 1950s. [14]
Repeatedly timing each period of a Kater pendulum, and adjusting the weights until they were equal, was time-consuming and error-prone. Friedrich Bessel showed in 1826 that this was unnecessary. As long as the periods measured from each pivot, T1 and T2, are close in value, the period T of the equivalent simple pendulum can be calculated from them: [15]
Here and are the distances of the two pivots from the pendulum's center of gravity. The distance between the pivots, , can be measured with great accuracy. and , and thus their difference , cannot be measured with comparable accuracy. They are found by balancing the pendulum on a knife edge to find its center of gravity, and measuring the distances of each of the pivots from the center of gravity. However, because is so much smaller than , the second term on the right in the above equation is small compared to the first, so doesn't have to be determined with high accuracy, and the balancing procedure described above is sufficient to give accurate results.
Therefore, the pendulum doesn't have to be adjustable at all, it can simply be a rod with two pivots. As long as each pivot is close to the center of oscillation of the other, so the two periods are close, the period T of the equivalent simple pendulum can be calculated with equation (2), and the gravity can be calculated from T and L with (1).
In addition, Bessel showed that if the pendulum was made with a symmetrical shape, but internally weighted on one end, the error caused by effects of air resistance would cancel out. Also, another error caused by the finite diameter of the pivot knife edges could be made to cancel out by interchanging the knife edges.
Bessel didn't construct such a pendulum, but in 1864 Adolf Repsold, under contract to the Swiss Geodetic Commission, developed a symmetric pendulum 56 cm long with interchangeable pivot blades, with a period of about 3⁄4 second. The Repsold pendulum was used extensively by the Swiss and Russian Geodetic agencies, and in the Survey of India. Other widely used pendulums of this design were made by Charles Peirce and C. Defforges.
The 1875 Conference of the European Arc Measurement dealt with the best instrument to be used for the determination of gravity. The association decided in favor of the reversion pendulum and it was resolved to redo in Berlin, in the station where Friedrich Wilhelm Bessel made his famous measurements, the determination of gravity by means of devices of various kinds employed in different countries, in order to compare them and thus to have the equation of their scales, after an in-depth discussion in which an American scholar, Charles Sanders Peirce, took part. [16] Indeed, as the figure of the Earth could be inferred from variations of the seconds pendulum length, the United States Coast Survey's direction instructed Charles Sanders Peirce in the spring of 1875 to proceed to Europe for the purpose of making pendulum experiments to chief initial stations for operations of this sort, in order to bring the determinations of the forces of gravity in America into communication with those of other parts of the world; and also for the purpose of making a careful study of the methods of pursuing these researches in the different countries of Europe. [17]
The determination of gravity by the reversible pendulum was subject to two types of error. On the one hand the resistance of the air and on the other hand the movements that the oscillations of the pendulum imparted to its plane of suspension. These movements were particularly important with the apparatus designed by the Repsold brothers on the indications of Bessel, because the pendulum had a large mass in order to counteract the effect of the viscosity of the air. While Emile Plantamour was carrying out a series of experiments with this device, Adolph Hirsch found a way to demonstrate the movements of the pendulum's suspension plane by an ingenious process of optical amplification. Isaac-Charles Élisée Cellérier, a mathematician from Geneva and Charles Sanders Peirce would independently develop a correction formula that allowed the use of the observations made with this type of gravimeter. [18] [19]
President of the Permanent Commission of the European Arc Measurement from 1874 to 1886, Carlos Ibáñez Ibáñez de Ibero became the first president of the International Geodetic Association (1887–1891) after the death of Johann Jacob Baeyer. Under Ibáñez's presidency, the International Geodetic Association acquired a global dimension with the accession of the United States, Mexico, Chile, Argentina and Japan. As a result of the work of the International Geodetic Association, in 1901, Friedrich Robert Helmert found, mainly by gravimetry, parameters of the ellipsoid remarkably close to reality. [20] [21] [22] [23]
Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.
The metre is the base unit of length in the International System of Units (SI). Since 2019 the metre has been defined as the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second, where the second is defined by a hyperfine transition frequency of caesium.
A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens, inspired by Galileo Galilei, until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries, pendulum clocks in homes, factories, offices, and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation. Their greater accuracy allowed for the faster pace of life which was necessary for the Industrial Revolution. The home pendulum clock was replaced by less-expensive synchronous electric clocks in the 1930s and '40s. Pendulum clocks are now kept mostly for their decorative and antique value.
A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.
The history of geodesy (/dʒiːˈɒdɪsi/) began during antiquity and ultimately blossomed during the Age of Enlightenment.
In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.
An inverted pendulum is a pendulum that has its center of mass above its pivot point. It is unstable and without additional help will fall over. It can be suspended stably in this inverted position by using a control system to monitor the angle of the pole and move the pivot point horizontally back under the center of mass when it starts to fall over, keeping it balanced. The inverted pendulum is a classic problem in dynamics and control theory and is used as a benchmark for testing control strategies. It is often implemented with the pivot point mounted on a cart that can move horizontally under control of an electronic servo system as shown in the photo; this is called a cart and pole apparatus. Most applications limit the pendulum to 1 degree of freedom by affixing the pole to an axis of rotation. Whereas a normal pendulum is stable when hanging downwards, an inverted pendulum is inherently unstable, and must be actively balanced in order to remain upright; this can be done either by applying a torque at the pivot point, by moving the pivot point horizontally as part of a feedback system, changing the rate of rotation of a mass mounted on the pendulum on an axis parallel to the pivot axis and thereby generating a net torque on the pendulum, or by oscillating the pivot point vertically. A simple demonstration of moving the pivot point in a feedback system is achieved by balancing an upturned broomstick on the end of one's finger.
A Kibble balance is an electromechanical measuring instrument that measures the weight of a test object very precisely by the electric current and voltage needed to produce a compensating force. It is a metrological instrument that can realize the definition of the kilogram unit of mass based on fundamental constants.
Thomas Corwin Mendenhall was an American autodidact physicist and meteorologist. He was the first professor hired at Ohio State University in 1873 and the superintendent of the United States Coast and Geodetic Survey from 1889 to 1894. Alongside his work, he was also an advocate for the adoption of the metric system by the United States and is the father of author profiling.
Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. The study of gravity changes belongs to geodynamics.
The center of percussion is the point on an extended massive object attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot. Translational and rotational motions cancel at the pivot when an impulsive blow is struck at the center of percussion. The center of percussion is often discussed in the context of a bat, racquet, door, sword or other extended object held at one end.
Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in improperly constructed structures including bridges, buildings and airplanes. This is a phenomenon known as resonance disaster.
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .
A ballistic pendulum is a device for measuring a bullet's momentum, from which it is possible to calculate the velocity and kinetic energy. Ballistic pendulums have been largely rendered obsolete by modern chronographs, which allow direct measurement of the projectile velocity.
A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.
A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one direction and one second for the return swing, a frequency of 0.5 Hz.
An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.
The International Association of Geodesy (IAG) is a constituent association of the International Union of Geodesy and Geophysics.
The history of the metre starts with the Scientific Revolution that is considered to have begun with Nicolaus Copernicus's publication of De revolutionibus orbium coelestium in 1543. Increasingly accurate measurements were required, and scientists looked for measures that were universal and could be based on natural phenomena rather than royal decree or physical prototypes. Rather than the various complex systems of subdivision then in use, they also preferred a decimal system to ease their calculations.
Carlos Ibáñez e Ibáñez de Ibero, 1st Marquis of Mulhacén, was a Spanish divisional general and geodesist. He represented Spain at the 1875 Conference of the Metre Convention and was the first president of the International Committee for Weights and Measures. As a forerunner geodesist and president of the International Geodetic Association, he played a leading role in the worldwide dissemination of the metric system. His activities resulted in the distribution of a platinum and iridium prototype of the metre to all States parties to the Metre Convention during the first meeting of the General Conference on Weights and Measures in 1889. These prototypes defined the metre right up until 1960.
pendulum.