Kelly Korreck is an American space scientist. She is currently an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian [1] and Program Scientist at NASA as head of operations for the Solar Wind Electrons Alphas and Protons (SWEAP) instrument [2] aboard the Parker Solar Probe spacecraft.
Korreck obtained a BSc in astronomy and physics from the University of Michigan in 1999, followed by a PhD in space physics in 2005. Since 2006, she has worked at the Center for Astrophysics | Harvard & Smithsonian, first as an astrophysicist and, since 2017, as a project manager. She was the science Co-I[ clarification needed ] and chief observer for the X-ray telescope (XRT) aboard JAXA's Hinode spacecraft. Korreck was involved in the development and build of the High Resolution Coronal Imager (Hi-C) Sounding Rocket. [3] She is currently science Co-I for the Solar Wind Electrons Alphas and Protons (SWEAP) instrument [2] [4] [5] on board the Parker Solar Probe spacecraft.
Korreck's main research interests are high energy particle processes associated with shocks in the heliosphere [6] and other astronomical systems, such as supernovae. [7] [8]
Korreck in actively involved in a wide range of outreach and mentoring activities aimed at promoting science and engineering, and increasing engagement. She is one of 125 women selected as American Association for the Advancement of Science (AAAS) IF/THEN ambassadors which seek to further women in STEM. [9] She has also developed a series of planetarium shows about space weather and results from Parker Solar Probe. [10] As part of the American Astronomical Society and Smithsonian Astrophysical Observatory "Space on the Hill" series, Korreck worked on a series of educational programs designed to brief Hill staff about astronomical sciences. [11]
Korreck also undertakes regular media appearances related to space and astronomy. [12] [13] [14]
A corona is the outermost layer of a star's atmosphere. It is a hot but relatively dim region of plasma populated by intermittent coronal structures known as solar prominences or filaments.
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.
The Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others may be temporarily created. The belts are named after James Van Allen, who published an article describing the belts in 1958.
A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.
Helios-A and Helios-B are a pair of probes that were launched into heliocentric orbit to study solar processes. As a joint venture between German Aerospace Center (DLR) and NASA, the probes were launched from Cape Canaveral Air Force Station, Florida, on December 10, 1974, and January 15, 1976, respectively.
Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.
Eugene Newman Parker was an American solar and plasma physicist. In the 1950s he proposed the existence of the solar wind and that the magnetic field in the outer Solar System would be in the shape of a Parker spiral, predictions that were later confirmed by spacecraft measurements. In 1987, Parker proposed the existence of nanoflares, a leading candidate to explain the coronal heating problem.
The Solar Orbiter (SolO) is a Sun-observing probe developed by the European Space Agency (ESA) with a National Aeronautics and Space Administration (NASA) contribution. Solar Orbiter, designed to obtain detailed measurements of the inner heliosphere and the nascent solar wind, will also perform close observations of the polar regions of the Sun which is difficult to do from Earth. These observations are important in investigating how the Sun creates and controls its heliosphere.
Solar physics is the branch of astrophysics that specializes in the study of the Sun. It intersects with many disciplines of pure physics and astrophysics.
The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft designed to study radio waves and plasma that occur in the solar wind and in the Earth's magnetosphere. It was launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of 2.4 m and a height of 1.8 m.
The Parker Solar Probe is a NASA space probe launched in 2018 with the mission of making observations of the outer corona of the Sun. It will approach to within 9.86 solar radii from the center of the Sun, and by 2025 will travel, at closest approach, as fast as 690,000 km/h (430,000 mph) or 191 km/s, which is 0.064% the speed of light. It is the fastest object ever built.
Shock waves are common in astrophysical environments.
Shadia Rifa'i Habbal is a Syrian-American astronomer and physicist specialized in Space physics. A professor of Solar physics, her research is centered on Solar wind and Solar eclipse.
Katharine Reeves is an astronomer and solar physicist who works at the Center for Astrophysics | Harvard & Smithsonian (CfA). She is known for her work on high temperature plasmas in the solar corona, and measurement/analysis techniques to probe the physics of magnetic reconnection and thermal energy transport during solar flares; these are aspects of the coronal heating problem that organizes a large part of the field. She has a strong scientific role in multiple NASA and international space missions to observe the Sun: Hinode ; IRIS ; SDO; Parker Solar Probe; and suborbital sounding rockets including the MaGIXS and Hi-C FLARE high-resolution spectral imaging packages.
FIELDS is a science instrument on the Parker Solar Probe (PSP), designed to measure magnetic fields in the solar corona during its mission to study the Sun. It is one of four major investigations on board PSP, along with WISPR, ISOIS, and SWEAP. It features three magnetometers. FIELDS is planned to help answer an enduring questions about the Sun, such as why the solar corona is so hot compared to the surface of the Sun and why the solar wind is so fast.
The Wide-Field Imager for Solar Probe (WISPR) is an imaging instrument of the Parker Solar Probe mission to the Sun, launched in August 2018. Imaging targets include visible light images of the corona, solar wind, shocks, solar ejecta, etc. Development of WISPR was led by the U.S. Naval Research Laboratory. The Parker Solar Probe with WISPR on board was launched by a Delta IV Heavy on 12 August 2018 from Cape Canaveral, Florida. WISPR is intended take advantage of the spacecraft's proximity to the Sun by taking coronagraph-style images of the solar corona and features like coronal streamers, plumes, and mass ejections. One of the goals is to better understand the structure of the solar corona near the Sun.
SWEAP is an instrument on the unmanned space probe to the Sun, the Parker Solar Probe. The spacecraft with SWEAP on board was launched by a Delta IV Heavy on 12 August 2018 from Cape Canaveral, Florida. SWEAP includes two types of instruments, the Solar Probe Cup (SPC) and Solar Probe Analyzers (SPAN). SWEAP has four sensors overall, and is designed to take measurements of the Solar wind including electrons and ions of hydrogen (protons) and helium.
The Alfvén surface is the boundary separating a star's corona from the stellar wind defined as where the coronal plasma's Alfvén speed and the large-scale stellar wind speed are equal. It is named after Hannes Alfvén, and is also called Alfvén critical surface, Alfvén point, or Alfvén radius. In 2018, the Parker Solar Probe became the first spacecraft that crossed Alfvén surface of the Sun.
Magnetic switchbacks are sudden reversals in the magnetic field of the solar wind. They can also be described as traveling disturbances in the solar wind that caused the magnetic field to bend back on itself. They were first observed by the NASA-ESA mission Ulysses, the first spacecraft to fly over the Sun's poles. NASA's Parker Solar Probe and NASA/ESA Solar Orbiter both observed switchbacks.
Anthony W. Case is an American astrophysicist who has designed instruments to study the solar wind and cosmic rays on unmanned spacecraft. A native of Oregon, he earned his undergraduate degree in physics from the University of Oregon and a doctorate in astronomy at Boston University. His research has focused on the measurement of atomic particles in space, and the instruments used for that purpose, particularly Faraday cups.