Ken Poss Ph.D. | |
---|---|
Born | Green Bay, Wisconsin, U.S. |
Alma mater | Carleton College Massachusetts Institute of Technology |
Scientific career | |
Doctoral advisor | Susumu Tonegawa |
Other academic advisors | Mark Keating |
Website | sites |
Kenneth D. Poss (born 1971 in Green Bay, Wisconsin) is an American biologist and currently James B. Duke Professor of Cell Biology and director of the Regeneration Next Initiative at the Duke University School of Medicine (Durham, North Carolina).
Poss received a B.A. in Biology from Carleton College (Minnesota) in 1992, and a Ph.D. in Biology in 1998 from Massachusetts Institute of Technology working with Susumu Tonegawa. Poss did postdoctoral research with Mark Keating, first at University of Utah and then at Harvard Medical School. Poss became faculty in the Department of Cell Biology at Duke University in 2003. [1]
Poss uses zebrafish to understand how and why tissue regeneration occurs. As a postdoc, he led the first positional cloning of a gene required for regeneration of amputated fins, [2] and he established zebrafish as a model for innate heart regeneration. [3] With the latter discovery, it became clear that heart regeneration occurs and is efficient in some vertebrates, and that it could be dissected using molecular genetics in a tractable model system. Since then, he and his postdocs, students, and staff have innovated many tools to interrogate tissue regeneration. Poss reported that heart muscle cells, not stem cells, are activated by injury to divide and directly replace lost cardiac tissue. [4] His lab has a history of research findings on the outer layer of the heart called the epicardium, beginning with discovery of its dynamism upon injury, [5] to its fate-mapping, [6] to its roles in releasing pro-regenerative factors, and to studies describing its own regenerative capacity. [7] [8] His group applied Brainbow-based technology to demonstrate that particularly high proliferative activity by a small number of muscle cells, known as clonal dominance, creates the structure of the adult heart. [9] His lab also identified a key factor important for the process by which zebrafish regenerate spinal cord tissue to reverse a paralyzing injury. [10] Recently, he introduced the concept of tissue regeneration enhancer elements (TREEs), sequences that regulate regeneration programs and can be engineered to enhance tissue regeneration. [11] [12]
Poss was a Helen Hay Whitney Foundation Postdoctoral Fellow, a Pew Scholar, and a Howard Hughes Medical Institute Early Career Scientist. He received the Established Investigator and Merit Awards from the American Heart Association, the Ruth and A. Morris Williams Faculty Research Prize from Duke University, and the Distinguished Achievement Award from Carleton College. Poss was named a Fellow of the American Association for the Advancement of Science.
The zebrafish is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to India and South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio.
Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.
Regeneration in biology is the process of renewal, restoration, and tissue growth that makes genomes, cells, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage. Every species is capable of regeneration, from bacteria to humans. Regeneration can either be complete where the new tissue is the same as the lost tissue, or incomplete after which the necrotic tissue becomes fibrotic.
Regenerative medicine deals with the "process of replacing, engineering or regenerating human or animal cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by stimulating the body's own repair mechanisms to functionally heal previously irreparable tissues or organs.
Müller glia, or Müller cells, are a type of retinal glial cells, first recognized and described by Heinrich Müller. They are found in the vertebrate retina, where they serve as support cells for the neurons, as all glial cells do. They are the most common type of glial cell found in the retina. While their cell bodies are located in the inner nuclear layer of the retina, they span across the entire retina.
Sean J. Morrison is a Canadian-American stem cell biologist and cancer researcher. Morrison is the director of Children's Medical Center Research Institute at UT Southwestern (CRI), a nonprofit research institute established in 2011 as a joint venture between Children’s Health System of Texas and UT Southwestern Medical Center. With Morrison as founding director, CRI was established to perform transformative biomedical research at the interface of stem cell biology, cancer and metabolism to better understand the biological basis of disease. He is a Howard Hughes Medical Institute Investigator, has served as president of the International Society for Stem Cell Research, and is a member of the U.S. National Academy of Medicine, U.S. National Academy of Sciences and European Molecular Biology Organization.
Planar cell polarity (PCP) is the protein-mediated signaling that coordinates the orientation of cells in a layer of epithelial tissue. In vertebrates, examples of mature PCP oriented tissue are the stereo-cilia bundles in the inner ear, motile cilia of the epithelium, and cell motility in epidermal wound healing. Additionally, PCP is known to be crucial to major developmental time points including coordinating convergent extension during gastrulation and coordinating cell behavior for neural tube closure. Cells orient themselves and their neighbors by establishing asymmetric expression of PCP components on opposing cell members within cells to establish and maintain the directionality of the cells. Some of these PCP components are transmembrane proteins which can proliferate the orientation signal to the surrounding cells.
Margaret Buckingham, is a British developmental biologist working in the fields of myogenesis and cardiogenesis. She is an honorary professor at the Pasteur Institute in Paris and emeritus director in the Centre national de la recherche scientifique (CNRS). She is a member of the European Molecular Biology Organization, the Academia Europaea and the French Academy of Sciences.
Epimorphosis is defined as the regeneration of a specific part of an organism in a way that involves extensive cell proliferation of somatic stem cells, dedifferentiation, and reformation, as well as blastema formation. Epimorphosis can be considered a simple model for development, though it only occurs in tissues surrounding the site of injury rather than occurring system-wide. Epimorphosis restores the anatomy of the organism and the original polarity that existed before the destruction of the tissue and/or a structure of the organism. Epimorphosis regeneration can be observed in both vertebrates and invertebrates such as the common examples: salamanders, annelids, and planarians.
Alexander F. Schier is a Professor of Cell Biology and the Director of the Biozentrum University of Basel, Switzerland.
Richard Paul Harvey is a molecular biologist, the Sir Peter Finley professor of Heart Research at the University of New South Wales and Deputy Director and Head of the Developmental and Stem Cell Biology Division at the Victor Chang Cardiac Research Institute.
Ginés Morata Pérez ForMemRS is Research Professor at the Autonomous University of Madrid in Spain and an expert in developmental biology of the fruit fly (Drosophila), a specialty he has worked on for over 40 years.
Developmental bioelectricity is the regulation of cell, tissue, and organ-level patterning and behavior by electrical signals during the development of embryonic animals and plants. The charge carrier in developmental bioelectricity is the ion rather than the electron, and an electric current and field is generated whenever a net ion flux occurs. Cells and tissues of all types use flows of ions to communicate electrically. Endogenous electric currents and fields, ion fluxes, and differences in resting potential across tissues comprise a signalling system. It functions along with biochemical factors, transcriptional networks, and other physical forces to regulate cell behaviour and large-scale patterning in processes such as embryogenesis, regeneration, and cancer suppression.
Catherina Gwynne Becker is an Alexander von Humboldt Professor at TU Dresden, and was formerly Professor of Neural Development and Regeneration at the University of Edinburgh.
Didier Stainier is a Belgian/American developmental geneticist who is currently a director at the Max Planck Institute for Heart and Lung Research in Bad Nauheim, Germany.
Thomas A. Rando is an American stem cell biologist and neurologist, best known for his research on basic mechanisms of stem cell biology and the biology of aging. He is the Director of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and a professor of Neurology and Molecular, Cell and Developmental Biology at the University of California, Los Angeles. Prior to joining the UCLA faculty, he served as Professor of Neurology and Neurological Sciences at Stanford University School of Medicine, where he was also founding director of the Glenn Center for the Biology of Aging. His additional roles while at Stanford included co-founder and deputy director of the Stanford Center on Longevity, founding director of Stanford's Muscular Dystrophy Association Clinic, and Chief of Neurology at the VA Palo Alto Health Care System.
Dedifferentiation is a transient process by which cells become less specialized and return to an earlier cell state within the same lineage. This suggests an increase in cell potency, meaning that, following dedifferentiation, a cell may possess the ability to re-differentiate into more cell types than it did before dedifferentiation. This is in contrast to differentiation, where differences in gene expression, morphology, or physiology arise in a cell, making its function increasingly specialized.
Cardiomyocyte proliferation refers to the ability of cardiac muscle cells to progress through the cell cycle and continue to divide. Traditionally, cardiomyocytes were believed to have little to no ability to proliferate and regenerate after birth. Although other types of cells, such as gastrointestinal epithelial cells, can proliferate and differentiate throughout life, cardiac tissue contains little intrinsic ability to proliferate, as adult human cells arrest in the cell cycle. However, a recent paradigm shift has occurred. Recent research has demonstrated that human cardiomyocytes do proliferate to a small extent for the first two decades of life. Also, cardiomyocyte proliferation and regeneration has been demonstrated to occur in various neonatal mammals in response to injury in the first week of life. Current research aims to further understand the biological mechanism underlying cardiomyocyte proliferation in hopes to turn this capability back on in adults in order to combat heart disease.
Patricia C. Zambryski is a plant and microbial scientist known for her work on Type IV secretion and cell-to-cell transport in plants. She is also professor emeritus at the University of California, Berkeley.
Metaphocytes are myeloid-like cells considered among tissue-resident macrophages (TRMs) and are present in the skin, gill, and intestine of the zebrafish. Originating from the ectoderm during development, metaphocytes share many similarities, in terms of cellular morphology and gene expression profile with macrophages in particular the Langerhans cells in the skin.