Khabibullin's conjecture on integral inequalities

Last updated

Khabibullin's conjecture is a conjecture in mathematics related to Paley's problem [1] for plurisubharmonic functions and to various extremal problems in the theory of entire functions of several variables. The conjecture was named after its proposer, B. N. Khabibullin.

Contents

There are three versions of the conjecture, one in terms of logarithmically convex functions, one in terms of increasing functions, and one in terms of non-negative functions. The conjecture has implications in the study of complex functions and is related to Euler's Beta function. While the conjecture is known to hold for certain conditions, counterexamples have also been found.

The first statement in terms of logarithmically convex functions

Khabibullin's conjecture (version 1, 1992). Let be a non-negative increasing function on the half-line such that . Assume that is a convex function of . Let , , and . If

 

 

 

 

(1)

then

 

 

 

 

(2)

This statement of the Khabibullin's conjecture completes his survey. [2]

Relation to Euler's Beta function

The product in the right hand side of the inequality ( 2 ) is related to the Euler's Beta function :

Discussion

For each fixed the function

turns the inequalities ( 1 ) and ( 2 ) to equalities.

The Khabibullin's conjecture is valid for without the assumption of convexity of . Meanwhile, one can show that this conjecture is not valid without some convexity conditions for . In 2010, R. A. Sharipov showed that the conjecture fails in the case and for . [3]

The second statement in terms of increasing functions

Khabibullin's conjecture (version 2). Let be a non-negative increasing function on the half-line and . If

then

The third statement in terms of non-negative functions

Khabibullin's conjecture (version 3). Let be a non-negative continuous function on the half-line and . If

then

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.

The Liouville Lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

<span class="mw-page-title-main">Prime-counting function</span> Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

The birth–death process is a special case of continuous-time Markov process where the state transitions are of only two types: "births", which increase the state variable by one and "deaths", which decrease the state by one. It was introduced by William Feller. The model's name comes from a common application, the use of such models to represent the current size of a population where the transitions are literal births and deaths. Birth–death processes have many applications in demography, queueing theory, performance engineering, epidemiology, biology and other areas. They may be used, for example, to study the evolution of bacteria, the number of people with a disease within a population, or the number of customers in line at the supermarket.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, the Lebesgue differentiation theorem is a theorem of real analysis, which states that for almost every point, the value of an integrable function is the limit of infinitesimal averages taken about the point. The theorem is named for Henri Lebesgue.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

Tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

In mathematics, the Morrey–Campanato spaces are Banach spaces which extend the notion of functions of bounded mean oscillation, describing situations where the oscillation of the function in a ball is proportional to some power of the radius other than the dimension. They are used in the theory of elliptic partial differential equations, since for certain values of , elements of the space are Hölder continuous functions over the domain .

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model. It should not be confused with compound Poisson distribution or compound Poisson process.

In mathematics, the Faxén integral is the following integral

References

  1. Khabibullin B.N. (1999). "Paley problem for plurisubharmonic functions of finite lower order". Sbornik: Mathematics. 190 (2): 309–321. Bibcode:1999SbMat.190..309K. doi:10.1070/SM1999v190n02ABEH000387. S2CID   250806401.
  2. Khabibullin BN (2002). "The representation of a meromorphic function as the quotient of entire functions and Paley problem in : a survey of some results". Mat. Fizika, Analiz, Geometria. 9 (2): 146–167. arXiv: math.CV/0502433 .
  3. Sharipov, R. A. (2010). "A Counterexample to Khabibullin's Conjecture for Integral Inequalities". Ufa Mathematical Journal. 2 (4): 99–107. arXiv: 1008.2738 . Bibcode:2010arXiv1008.2738S.