Kier (industrial)

Last updated
High Pressure Blow-through Kier EB1911 Bleaching - Fig. 4. --High Pressure Blow-through Kier.jpg
High Pressure Blow-through Kier

A kier or keeve (or similar spellings) is a large circular boiler or vat used in bleaching or scouring cotton fabric. They were also used for processing paper pulp.

Contents

In use they were continuously rotated by an engine, steam being supplied through a rotating joint in the axle. They were usually spherical, sometimes cylindrical, and some were recycled from old boiler shells. [1]

Kier boiling

Kier, the cylindrical-shaped vessel, straight, with egg-shaped ends made of boiler may have the capacity to process one to three tons of material at a time. [2]

Kier boiling and ''Boiling off'' is the scouring process that involves boiling the materials with the caustic solution in the Kier, which is an enclosed vessel, so that the fabric can boil under pressure. [3] [4] [5] Open kiers were also used with temperatures below 100°C (at atmospheric pressure). [6] :102

See also

Related Research Articles

<span class="mw-page-title-main">Steam engine</span> Heat engine that performs mechanical work using steam as its working fluid

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed, by a connecting rod and crank, into rotational force for work. The term "steam engine" is generally applied only to reciprocating engines as just described, not to the steam turbine. Steam engines are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.

<span class="mw-page-title-main">Paper machine</span> Fourdrinier Paper Manufacturing

A paper machine is an industrial machine which is used in the pulp and paper industry to create paper in large quantities at high speed. Modern paper-making machines are based on the principles of the Fourdrinier Machine, which uses a moving woven mesh to create a continuous paper web by filtering out the fibres held in a paper stock and producing a continuously moving wet mat of fibre. This is dried in the machine to produce a strong paper web.

<span class="mw-page-title-main">Pressure vessel</span> Vessel for pressurised gases or liquids

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

<span class="mw-page-title-main">Compound steam engine</span> Steam engine where steam is expanded in stages

A compound steam engine unit is a type of steam engine where steam is expanded in two or more stages. A typical arrangement for a compound engine is that the steam is first expanded in a high-pressure (HP) cylinder, then having given up heat and losing pressure, it exhausts directly into one or more larger-volume low-pressure (LP) cylinders. Multiple-expansion engines employ additional cylinders, of progressively lower pressure, to extract further energy from the steam.

<span class="mw-page-title-main">Calender</span> Series of hard pressure rollers that produces a surface effect on fabric, paper, or plastic film

A calender is a series of hard pressure rollers used to finish or smooth a sheet of material such as paper, textiles, rubber, or plastics. Calender rolls are also used to form some types of plastic films and to apply coatings. Some calender rolls are heated or cooled as needed. Calenders are sometimes misspelled calendars.

<span class="mw-page-title-main">Textile manufacturing</span> The industry which produces textiles

Textile manufacturing is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.

<span class="mw-page-title-main">Thermal power station</span> Power plant that generates electricity from heat energy

A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.

A deaerator is a device that removes oxygen and other dissolved gases from liquids and pumpable compounds. Deaerators are considered Water treatment equipment.

<span class="mw-page-title-main">Boiler explosion</span> Catastrophic failure of a boiler

A boiler explosion is a catastrophic failure of a boiler. There are two types of boiler explosions. One type is a failure of the pressure parts of the steam and water sides. There can be many different causes, such as failure of the safety valve, corrosion of critical parts of the boiler, or low water level. Corrosion along the edges of lap joints was a common cause of early boiler explosions.

<span class="mw-page-title-main">Textile printing</span> Method for applying patterns to cloth using printing techniques

Textile printing is the process of applying color to fabric in definite patterns or designs. In properly printed fabrics the colour is bonded with the fibre, so as to resist washing and friction. Textile printing is related to dyeing but in dyeing properly the whole fabric is uniformly covered with one colour, whereas in printing one or more colours are applied to it in certain parts only, and in sharply defined patterns.

<span class="mw-page-title-main">Textile bleaching</span> Textile wet process that improves whiteness by removing natural color

The textile bleaching is one of the steps in the textile manufacturing process. The objective of bleaching is to remove the natural color for the following steps such as dyeing or printing or to achieve full white. All raw textile materials, when they are in natural form, are known as 'greige' material. They have their natural color, odor and impurities that are not suited to clothing materials. Not only the natural impurities will remain in the greige material, but also the add-ons that were made during its cultivation, growth and manufacture in the form of pesticides, fungicides, worm killers, sizes, lubricants, etc. The removal of these natural coloring matters and add-ons during the previous state of manufacturing is called scouring and bleaching.

<span class="mw-page-title-main">Boiler (power generation)</span> High pressure steam generator

A boiler or steam generator is a device used to create steam by applying heat energy to water. Although the definitions are somewhat flexible, it can be said that older steam generators were commonly termed boilers and worked at low to medium pressure but, at pressures above this, it is more usual to speak of a steam generator.

<span class="mw-page-title-main">History of the steam engine</span> Heat engine that performs mechanical work using steam as its working fluid

The first recorded rudimentary steam engine was the aeolipile mentioned by Vitruvius between 30 and 15 BC and, described by Heron of Alexandria in 1st-century Roman Egypt. Several steam-powered devices were later experimented with or proposed, such as Taqi al-Din's steam jack, a steam turbine in 16th-century Ottoman Egypt, and Thomas Savery's steam pump in 17th-century England. In 1712, Thomas Newcomen's atmospheric engine became the first commercially successful engine using the principle of the piston and cylinder, which was the fundamental type of steam engine used until the early 20th century. The steam engine was used to pump water out of coal mines.

<span class="mw-page-title-main">Finishing (textiles)</span> Manufacturing process

In textile manufacturing, finishing refers to the processes that convert the woven or knitted cloth into a usable material and more specifically to any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finish textile or clothing. The precise meaning depends on context.

<span class="mw-page-title-main">J & E Wood</span>

J & E Wood was a company that manufactured stationary steam engines. It was based in the Bolton in Greater Manchester, England. The company produced large steam-driven engines for textile mills in Lancashire and elsewhere.

Wet Processing Engineering is one of the major streams in Textile Engineering or Textile manufacturing which refers to the engineering of textile chemical processes and associated applied science. The other three streams in textile engineering are yarn engineering, fabric engineering, and apparel engineering. The processes of this stream are involved or carried out in an aqueous stage. Hence, it is called a wet process which usually covers pre-treatment, dyeing, printing, and finishing.

<span class="mw-page-title-main">Bancroft Shed</span> Mill museum in England

Bancroft Shed was a weaving shed in Barnoldswick, Lancashire, England, situated on the road to Skipton. Construction was started in 1914 and the shed was commissioned in 1920 for James Nutter & Sons Limited. The mill closed on 22 December 1978 and was demolished. The engine house, chimneys and boilers have been preserved and maintained as a working steam museum. The mill was the last steam-driven weaving shed to be constructed and the last to close.

<span class="mw-page-title-main">Greige goods</span> Woven or knitted fabrics which are not yet dyed or finished.

Greige goods are loom state woven fabrics, or unprocessed knitted fabrics. Greige goods undergo many subsequent processes, for instance, dyeing, printing, bleaching, and finishing, prior to further converting to finished goods such as clothing, or other textile products."Grey fabrics" is another term to refer to unfinished woven or knitted fabrics.

<span class="mw-page-title-main">Grassing (textiles)</span> Old method of bleaching

Grassing is one of the oldest methods of bleaching textile goods. The grassing method has been long been used in Europe to bleach linen and cotton based fabrics.

<span class="mw-page-title-main">Scouring (textiles)</span> Chemical washing process

Scouring is a preparatory treatment of certain textile materials. Scouring removes soluble and insoluble impurities found in textiles as natural, added and adventitious impurities, for example, oils, waxes, fats, vegetable matter, as well as dirt. Removing these contaminants through scouring prepares the textiles for subsequent processes such as bleaching and dyeing. Though a general term, "scouring" is most often used for wool. In cotton, it is synonymously called "boiling out," and in silk, and "boiling off."

References

  1. McEwen, Alan (2009). Historic Steam Boiler Explosions. Sledgehammer Engineering Press. ISBN   978-0-9532725-2-5.
  2. Knecht, Edmund (1911). "Bleaching"  . In Chisholm, Hugh (ed.). Encyclopædia Britannica . Vol. 04 (11th ed.). Cambridge University Press. pp. 49–55, see page 50, fifth para. Bleaching of Cotton....The first operation, viz. that of boiling in alkali, is carried out in a "kier," a large, egg-ended, upright cylindrical vessel, constructed of boiler-plate and capable of treating from one to three tons of yarn at a time
  3. Purushothama, B. (2019-01-31). Handbook of Value Addition Processes for Fabrics. Woodhead Publishing India PVT. Limited. p. 27. ISBN   978-93-85059-92-6.
  4. Marsh, John Thompson; Wood, Frederick Charles (1945). An Introduction to the Chemistry of Cellulose. Chapman & Hall. p. 26.
  5. Lacasse, K.; Baumann, Werner (2012-12-06). Textile Chemicals: Environmental Data and Facts. Springer Science & Business Media. p. 95. ISBN   978-3-642-18898-5.
  6. Trotman, E. R. (Edward Russell) (1968). Textile scouring and bleaching. Internet Archive. London, Griffin. ISBN   978-0-85264-067-8.