Killer cell immunoglobulin-like receptor 2DL3

Last updated
KIR2DL3
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases KIR2DL3 , CD158B2, CD158b, GL183, KIR-023GB, KIR-K7b, KIR-K7c, KIR2DS5, KIRCL23, NKAT, NKAT2, NKAT2A, NKAT2B, p58, killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3, KIR2DS3, KIR2DL
External IDs OMIM: 604938 HomoloGene: 130667 GeneCards: KIR2DL3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015868
NM_014511

n/a

RefSeq (protein)

NP_056952

n/a

Location (UCSC) Chr 19: 54.74 – 54.75 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human
KIR2dl3.jpg

KIR2DL3, Killer cell immunoglobulin-like receptor 2DL3 is a transmembrane glycoprotein expressed by the natural killer cells and the subsets of the T cells. The KIR genes are polymorphic, which means that they have many different alleles. The KIR genes are also extremely homologous, which means that they are similar in position, structure and evolutionary origin, but not necessarily in function.

Natural killer (NK) cells are an important component of innate antiviral immune response. Have the ability to lyse target cells without prior sensitization antigen and regulate the immune responses by secreting chemokine adaptive and cytokines. Activation of NK cells is determined by integration of inhibitory signals and activating issued by several families of different receptors, including killer cell immunoglobulin-like receptors (KIR) that predominantly recognize antigens of class I human leukocyte antigen ( HLA). [4]

Structure and location

The genes responsible for coding of KIR proteins are found along the 19th chromosome section 19q 13.4 within the 1Mb Leukocyte Receptor Complex (LRC). The subsets of the KIR proteins are classified by their number of extracellular IG domains and by whether they have a long (L) or short (S) cytoplasmic domain-tail. The number coming at the end of the name of protein classifies it as a branch of the subset it belongs to. [5] [6] [7]

Function

The protein KIR2DL3 has long tailed cytoplasmic domain and transduce the inhibitory signal upon the ligand binding via an immunoreceptor tyrosine-based inhibitory motif (ITIM). The ligands of the protein is a subset of HLA-C molecules: HLA-Cw1, HLA-Cw3, HLA-Cw7. The protein is thought to play an important role in regulating of the immune responses. The HLA-C molecules are human leukocyte antigens and are the gene complexes to encode major histocompatibility complex (MHC) proteins in humans. HLA are polymorphic, thus the MHCs of humans differ from an individual to another. KIR2DL3 is a protein complex of two extracellular domains and a long tailed endo-cellular cytoplasmatic tail, which assign it in charge of sending inhibitory signals throughout the cell. [8]

Pathology

The protein KIR2DL3 transduces inhibitory signals upon the ligand binding via an immune tyrosine-based inhibitory motif (ITIM) to its long inner cytoplasmic tail. The tyrosine kinase based transductions are enzymatic transferences of a phosphate group from an ATP molecule to a protein in the cell. Thus functioning as an ' on ' and ' off ' switch in many cellular functions. Tyrosine Kinases are a sub-class of the protein-kinase. Phosphorylation of proteins is a necessary step in transduction of signals within a cell in order to regulate the cellular activity. Protein Kinases might get stuck in ' off ' position and inhibit the cell reproduction for good, or on the contrary might get stuck in ' on 'position, thus rendering the cell to reproduce unregulatedly, which is a necessary step for the development of cancer. [9] [10] [11]

Related Research Articles

<span class="mw-page-title-main">Natural killer cell</span> Type of cytotoxic lymphocyte

Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of known innate lymphoid cells (ILC) and represent 5–20% of all circulating lymphocytes in humans. The role of NK cells is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virus-infected cell and other intracellular pathogens acting at around 3 days after infection, and respond to tumor formation. Typically, immune cells detect the major histocompatibility complex (MHC) presented on infected cell surfaces, triggering cytokine release, causing the death of the infected cell by lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize and kill stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the notion that they do not require activation to kill cells that are missing "self" markers of MHC class 1. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.

<span class="mw-page-title-main">HLA-C</span>

HLA-C belongs to the MHC class I heavy chain receptors. The C receptor is a heterodimer consisting of a HLA-C mature gene product and β2-microglobulin. The mature C chain is anchored in the membrane. MHC Class I molecules, like HLA-C, are expressed in nearly all cells, and present small peptides to the immune system which surveys for non-self peptides.

Killer-cell immunoglobulin-like receptors (KIRs), are a family of type I transmembrane glycoproteins expressed on the plasma membrane of natural killer (NK) cells and a minority of T cells. At least 15 genes and 2 pseudogenes encoding KIR map in a 150-kb region of the leukocyte receptor complex (LRC) on human chromosome 19q13.4.

An immunoreceptor tyrosine-based inhibitory motif (ITIM), is a conserved sequence of amino acids that is found intracellularly in the cytoplasmic domains of many inhibitory receptors of the non-catalytic tyrosine-phosphorylated receptor family found on immune cells. These immune cells include T cells, B cells, NK cells, dendritic cells, macrophages and mast cells. ITIMs have similar structures of S/I/V/LxYxxI/V/L, where x is any amino acid, Y is a tyrosine residue that can be phosphorylated, S is the amino acide Serine, I is the amino acid Isoleucine, and V is the amino acid Valine. ITIMs recruit SH2 domain-containing phosphatases, which inhibit cellular activation. ITIM-containing receptors often serve to target Immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, resulting in an innate inhibition mechanism within cells. ITIM bearing receptors have important role in regulation of immune system allowing negative regulation at different levels of the immune response.

Ly49 is a family of membrane C-type lectin-like receptors expressed mainly on NK cells but also on other immune cells. Their primary role is to bind MHC-I molecules to distinguish between self healthy cells and infected or altered cells. Ly49 family is coded by Klra gene cluster and include genes for both inhibitory and activating paired receptors, but most of them are inhibitory. Inhibitory Ly49 receptors play a role in the recognition of self cells and thus maintain self-tolerance and prevent autoimmunity by suppressing NK cell activation. On the other hand, activating receptors recognise ligands from cancer or viral infected cells and are used when cells lack or have abnormal expression of MHC-I molecules, which activate cytokine production and cytotoxic activity of NK and immune cells.

<span class="mw-page-title-main">LILRB1</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily B member 1 is a protein that in humans is encoded by the LILRB1 gene.

<span class="mw-page-title-main">HLA-F</span>

HLA class I histocompatibility antigen, alpha chain F is a protein that in humans is encoded by the HLA-F gene. It is an empty intracellular molecule that encodes a non-classical heavy chain anchored to the membrane and forming a heterodimer with a β-2 microglobulin light chain. It belongs to the HLA class I heavy chain paralogues that separate from most of the HLA heavy chains. HLA-F is localized in the endoplasmic reticulum and Golgi apparatus, and is also unique in the sense that it exhibits few polymorphisms in the human population relative to the other HLA genes; however, there have been found different isoforms from numerous transcript variants found for the HLA-F gene. Its pathways include INF-gamma signaling and CDK-mediated phosphorylation and removal of the Saccharomycescerevisiae Cdc6 protein, which is crucial for functional DNA replication.

<span class="mw-page-title-main">KIR3DL1</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 3DL1 is a protein that in humans is encoded by the KIR3DL1 gene.

<span class="mw-page-title-main">KIR2DL1</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 2DL1 is a protein that in humans is encoded by the KIR2DL1 gene.

<span class="mw-page-title-main">KIR2DL4</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 2DL4 is a protein that in humans is encoded by the KIR2DL4 gene.

<span class="mw-page-title-main">LAIR1</span> Protein-coding gene in the species Homo sapiens

Leukocyte-associated immunoglobulin-like receptor 1 is a protein that in humans is encoded by the LAIR1 gene. LAIR1 has also been designated as CD305.

<span class="mw-page-title-main">LILRB4</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily B member 4 is a protein that in humans is encoded by the LILRB4 gene.

<span class="mw-page-title-main">KIR3DL2</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 3DL2 is a protein that in humans is encoded by the KIR3DL2 gene.

<span class="mw-page-title-main">KIR2DS4</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 2DS4 is a protein that in humans is encoded by the KIR2DS4 gene.

<span class="mw-page-title-main">LILRA3</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily A member 3 (LILR-A3) also known as CD85 antigen-like family member E (CD85e), immunoglobulin-like transcript 6 (ILT-6), and leukocyte immunoglobulin-like receptor 4 (LIR-4) is a protein that in humans is encoded by the LILRA3 gene located within the leukocyte receptor complex on chromosome 19q13.4. Unlike many of its family, LILRA3 lacks a transmembrane domain. The function of LILRA3 is currently unknown; however, it is highly homologous to other LILR genes, and can bind human leukocyte antigen (HLA) class I. Therefore, if secreted, the LILRA3 might impair interactions of membrane-bound LILRs with their HLA ligands, thus modulating immune reactions and influencing susceptibility to disease.

<span class="mw-page-title-main">KIR3DL3</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 3DL3 is a protein that in humans is encoded by the KIR3DL3 gene.

<span class="mw-page-title-main">Killer activation receptor</span> Class of protein

Killer Activation Receptors (KARs) are receptors expressed on the plasmatic membrane of Natural Killer cells. KARs work together with inhibitory receptors, which inactivate them in order to regulate the NK cells functions on hosted or transformed cells. These two kinds of specific receptors have some morphological features in common, such as being transmembrane proteins. The similarities are specially found in the extracellular domains and, the differences tend to be in the intracellular domains. KARs and KIRs can have tyrosine containing activatory or inhibitory motifs in the intracellular part of the receptor molecule.

Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 1 is a protein that in humans is encoded by the KIR2DS1 gene.

Non-catalytic tyrosine-phosphorylated receptors (NTRs), also called immunoreceptors or Src-family kinase-dependent receptors, are a group of cell surface receptors expressed by leukocytes that are important for cell migration and the recognition of abnormal cells or structures and the initiation of an immune response. These transmembrane receptors are not grouped into the NTR family based on sequence homology, but because they share a conserved signalling pathway utilizing the same signalling motifs. A signaling cascade is initiated when the receptors bind their respective ligand resulting in cell activation. For that tyrosine residues in the cytoplasmic tail of the receptors have to be phosphorylated, hence the receptors are referred to as tyrosine-phosphorylated receptors. They are called non-catalytic receptors, as the receptors have no intrinsic tyrosine kinase activity and cannot phosphorylate their own tyrosine residues. Phosphorylation is mediated by additionally recruited kinases. A prominent member of this receptor family is the T-cell receptor.

<span class="mw-page-title-main">Paired receptors</span>

Paired receptors are pairs or clusters of receptor proteins that bind to extracellular ligands but have opposing activating and inhibitory signaling effects. Traditionally, paired receptors are defined as homologous pairs with similar extracellular domains and different cytoplasmic regions, whose genes are located together in the genome as part of the same gene cluster and which evolved through gene duplication. Homologous paired receptors often, but not always, have a shared ligand in common. More broadly, pairs of receptors have been identified that exhibit paired functional behavior - responding to a shared ligand with opposing intracellular signals - but are not closely homologous or co-located in the genome. Paired receptors are highly expressed in the cells of the immune system, especially natural killer (NK) and myeloid cells, and are involved in immune regulation.

References

  1. 1 2 3 ENSG00000274830, ENSG00000283790, ENSG00000277554, ENSG00000274952, ENSG00000284504, ENSG00000278369, ENSG00000278327, ENSG00000284510, ENSG00000277924, ENSG00000276459, ENSG00000283702, ENSG00000274402, ENSG00000284241, ENSG00000277484, ENSG00000273887, ENSG00000275623, ENSG00000243772, ENSG00000276218, ENSG00000275658, ENSG00000273947, ENSG00000274108, ENSG00000284333, ENSG00000284044, ENSG00000277317, ENSG00000284236, ENSG00000284132, ENSG00000276590, ENSG00000275008, ENSG00000274410, ENSG00000283996 GRCh38: Ensembl release 89: ENSG00000283708, ENSG00000274830, ENSG00000283790, ENSG00000277554, ENSG00000274952, ENSG00000284504, ENSG00000278369, ENSG00000278327, ENSG00000284510, ENSG00000277924, ENSG00000276459, ENSG00000283702, ENSG00000274402, ENSG00000284241, ENSG00000277484, ENSG00000273887, ENSG00000275623, ENSG00000243772, ENSG00000276218, ENSG00000275658, ENSG00000273947, ENSG00000274108, ENSG00000284333, ENSG00000284044, ENSG00000277317, ENSG00000284236, ENSG00000284132, ENSG00000276590, ENSG00000275008, ENSG00000274410, ENSG00000283996 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "KIR2DL3 - Killer cell immunoglobulin-like receptor 2DL3 precursor - Homo sapiens (Human) - KIR2DL3 gene & protein". www.uniprot.org. Retrieved 2018-11-18.
  4. Hölzemer A, Thobakgale CF, Jimenez Cruz CA, Garcia-Beltran WF, Carlson JM, van Teijlingen NH, et al. (November 2015). "Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa". PLOS Medicine. 12 (11): e1001900, discussion e1001900. doi:10.1371/journal.pmed.1001900. PMC   4648589 . PMID   26575988.
  5. Hölzemer A, Thobakgale CF, Jimenez Cruz CA, Garcia-Beltran WF, Carlson JM, van Teijlingen NH, et al. (November 2015). "Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa". PLOS Medicine. 12 (11): e1001900, discussion e1001900. doi:10.1371/journal.pmed.1001900. PMC   4648589 . PMID   26575988.
  6. Frazier WR, Steiner N, Hou L, Dakshanamurthy S, Hurley CK (June 2013). "Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand". Journal of Immunology. 190 (12): 6198–6208. doi:10.4049/jimmunol.1300464. PMC   3679298 . PMID   23686481.
  7. Lunemann S, Martrus G, Hölzemer A, Chapel A, Ziegler M, Körner C, et al. (August 2016). "Sequence variations in HCV core-derived epitopes alter binding of KIR2DL3 to HLA-C∗03:04 and modulate NK cell function". Journal of Hepatology. 65 (2): 252–258. doi:10.1016/j.jhep.2016.03.016. PMC   4955726 . PMID   27057987.
  8. Sim MJ, Stowell J, Sergeant R, Altmann DM, Long EO, Boyton RJ (January 2016). "KIR2DL3 and KIR2DL1 show similar impact on licensing of human NK cells". European Journal of Immunology. 46 (1): 185–191. doi:10.1002/eji.201545757. PMC   4737201 . PMID   26467237.
  9. Gendzekhadze K, Norman PJ, Abi-Rached L, Graef T, Moesta AK, Layrisse Z, Parham P (November 2009). "Co-evolution of KIR2DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands". Proceedings of the National Academy of Sciences of the United States of America. 106 (44): 18692–18697. Bibcode:2009PNAS..10618692G. doi: 10.1073/pnas.0906051106 . PMC   2774017 . PMID   19837691.
  10. Roberts CH, Molina S, Makalo P, Joof H, Harding-Esch EM, Burr SE, et al. (March 2014). "Conjunctival scarring in trachoma is associated with the HLA-C ligand of KIR and is exacerbated by heterozygosity at KIR2DL2/KIR2DL3". PLOS Neglected Tropical Diseases. 8 (3): e2744. doi:10.1371/journal.pntd.0002744. PMC   3961204 . PMID   24651768.
  11. Isitman G, Tremblay-McLean A, Lisovsky I, Bruneau J, Lebouché B, Routy JP, Bernard NF (2016-10-12). "NK Cells Expressing the Inhibitory Killer Immunoglobulin-Like Receptors (iKIR) KIR2DL1, KIR2DL3 and KIR3DL1 Are Less Likely to Be CD16+ than Their iKIR Negative Counterparts". PLOS ONE. 11 (10): e0164517. Bibcode:2016PLoSO..1164517I. doi: 10.1371/journal.pone.0164517 . PMC   5061331 . PMID   27732638.