Kirill Kavokin

Last updated
Kirill Kavokin
Kkavokin.jpg
Dr. Kirill Kavokin, August 2021.
Born26 November 1962 (1962-11-26) (age 61)
Leningrad
Nationality Russian
Alma mater Ioffe Institute
SpouseJulia Bojarinova.
Scientific career
FieldsSolid State Physics
Institutions Saint Petersburg State University, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Mediterranean Institute of Fundamental Physics
Thesis Theory of Free Magnetic Polarons in Quantum Wells with Semimagnetic Barriers.  (1993)
Doctoral advisor Prof. I.A. Merkulov

Kirill Kavokin (born 26 November 1962 in Leningrad) is a Russian physicist working on solid state physics, semiconductor optics and spin physics. He also works on animal vision and magnetoreception. He is currently leading scientist at the Spin Optics Laboratory (SOLAB) at Saint-Petersburg State University (SPbSU) and at the I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, in Saint Petersburg, Russia. He is the brother of Physicist Alexey Kavokin.

Contents

Scientific Career

Publications

He is the author or co-author of over 200 peer-reviewed publications, with key works on spin relaxation in semiconductors, which he studies at both a theoretical and experimental level. He also applied his knowledge of magnetic phenomena in solids to the problem of animal magnetoreception, in particular of garden warblers.

Selected publications:

Related Research Articles

Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

In physics, the Tsallis entropy is a generalization of the standard Boltzmann–Gibbs entropy. It is proportional to the expectation of the q-logarithm of a distribution.

A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels for motion in the third direction, which can then be ignored for most problems. Thus the electrons appear to be a 2D sheet embedded in a 3D world. The analogous construct of holes is called a two-dimensional hole gas (2DHG), and such systems have many useful and interesting properties.

<span class="mw-page-title-main">Quantum point contact</span>

A quantum point contact (QPC) is a narrow constriction between two wide electrically conducting regions, of a width comparable to the electronic wavelength.

The spin Hall effect (SHE) is a transport phenomenon predicted by Russian physicists Mikhail I. Dyakonov and Vladimir I. Perel in 1971. It consists of the appearance of spin accumulation on the lateral surfaces of an electric current-carrying sample, the signs of the spin directions being opposite on the opposing boundaries. In a cylindrical wire, the current-induced surface spins will wind around the wire. When the current direction is reversed, the directions of spin orientation is also reversed.

Gallium manganese arsenide, chemical formula (Ga,Mn)As is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide,, and readily compatible with existing semiconductor technologies. Differently from other dilute magnetic semiconductors, such as the majority of those based on II-VI semiconductors, it is not paramagnetic but ferromagnetic, and hence exhibits hysteretic magnetization behavior. This memory effect is of importance for the creation of persistent devices. In (Ga,Mn)As, the manganese atoms provide a magnetic moment, and each also acts as an acceptor, making it a p-type material. The presence of carriers allows the material to be used for spin-polarized currents. In contrast, many other ferromagnetic magnetic semiconductors are strongly insulating and so do not possess free carriers. (Ga,Mn)As is therefore a candidate material for spintronic devices but it is likely to remain only a testbed for basic research as its Curie temperature could only be raised up to approximatelly 200 K.

<span class="mw-page-title-main">Landau–Zener formula</span> Formula for the probability that a system will change between two energy states.

The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.

Ferromagnetic superconductors are materials that display intrinsic coexistence of ferromagnetism and superconductivity. They include UGe2, URhGe, and UCoGe. Evidence of ferromagnetic superconductivity was also reported for ZrZn2 in 2001, but later reports question these findings. These materials exhibit superconductivity in proximity to a magnetic quantum critical point.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

<span class="mw-page-title-main">Alexey Kavokin</span> Russian-French physics professor

Alexey V. Kavokin is a Russian and French theoretical physicist and writer.

A trion is a bound state of three charged particles. A negatively charged trion in crystals consists of two electrons and one hole, while a positively charged trion consists of two holes and one electron. The binding energy of a trion is largely determined by the exchange interaction between the two electrons (holes). The ground state of a negatively charged trion is a singlet. The triplet state is unbound in the absence of an additional potential or sufficiently strong magnetic field.

Electrically detected magnetic resonance (EDMR) is a materials characterisation technique that improves upon electron spin resonance. It involves measuring the change in electrical resistance of a sample when exposed to certain microwave frequencies. It can be used to identify very small numbers of impurities in semiconductors.

<span class="mw-page-title-main">Piers Coleman</span> British-American physicist

Piers Coleman is a British-born theoretical physicist, working in the field of theoretical condensed matter physics. Coleman is professor of physics at Rutgers University in New Jersey and at Royal Holloway, University of London.

<span class="mw-page-title-main">Arkady Aronov</span>

Arkady Girshevich Aronov was a Russian and Israeli theoretical condensed matter physicist, notable for his achievements in physics of semiconductors and in mesoscopic physics.

Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.

Valleytronics is an experimental area in semiconductors that exploits local extrema ("valleys") in the electronic band structure. Certain semiconductors have multiple "valleys" in the electronic band structure of the first Brillouin zone, and are known as multivalley semiconductors. Valleytronics is the technology of control over the valley degree of freedom, a local maximum/minimum on the valence/conduction band, of such multivalley semiconductors.

<span class="mw-page-title-main">Antonio H. Castro Neto</span>

Antonio Helio de Castro Neto is a Brazilian-born physicist. He is the founder and director of the Centre for Advanced 2D Materials at the National University of Singapore. He is a condensed matter theorist known for his work in the theory of metals, magnets, superconductors, graphene and two-dimensional materials. He is a distinguished professor in the Departments of Materials Science Engineering, and Physics and a professor at the Department of Electrical and Computer Engineering. He was elected as a fellow of the American Physical Society in 2003. In 2011 he was elected as a fellow of the American Association for the Advancement of Science.

Jonathan James Finley is a Professor of Physics at the Technical University of Munich in Garching, Germany, where he holds the Chair of Semiconductor Nanostructures and Quantum Systems. His focus is on quantum phenomena in semiconductor nanostructures, photonic materials, dielectric and metallic films, among others, for applications in quantum technology. At such, he made major contributions to the characterization and understanding of the optical, electronic and spintronic properties of quantum dots and wires both from group-IV and II-VI materials and oxides.

Elbio Rubén Dagotto is an Argentinian-American theoretical physicist and academic. He is a distinguished professor in the department of physics and astronomy at the University of Tennessee, Knoxville, and Distinguished Scientist in the Materials Science and Technology Division at the Oak Ridge National Laboratory.

Leo Radzihovsky is a Russian American condensed matter physicist and academic serving as a professor of Distinction in Physics at the University of Colorado Boulder.

References