Knowledge engineer

Last updated

A knowledge engineer is a professional engaged in the science of building advanced logic into computer systems in order to try to simulate human decision-making and high-level cognitive tasks. A knowledge engineer supplies some or all of the "knowledge" that is eventually built into the technology. [1]

Contents

Overview

Often, knowledge engineers are intermediaries employed to translate highly technical information which they elicit from domain experts into the actual computer program or data system ( ESDG 2000 ).

Knowledge engineers interpret and organize information on how to make systems decisions ( Aylett & Doniat 2002 ).

The term "knowledge engineer" first appeared in the 1980s in the first wave of commercialization of AI – the purpose of the job is to work with a client who wants an expert system created for them or their business.

Validation and verification

Knowledge engineers are involved with validation and verification.

Validation is the process of ensuring that something is correct or conforms to a certain standard. A knowledge engineer is required to carry out data collection and data entry, but they must use validation in order to ensure that the data they collect, and then enter into their systems, fall within the accepted boundaries of the application collecting the data.

It is important that a knowledge engineer incorporates validation procedures into their systems within the program code. After the knowledge-based system is constructed, it can be maintained by the domain expert ( Bultman, Kuipers & van Harmelen 2000 ).

Related Research Articles

<span class="mw-page-title-main">Artificial intelligence</span> Intelligence of machines or software

Artificial intelligence (AI) is the intelligence of machines or software, as opposed to the intelligence of humans or animals. It is also the field of study in computer science that develops and studies intelligent machines. "AI" may also refer to the machines themselves.

<span class="mw-page-title-main">Expert system</span> Computer system emulating the decision-making ability of a human expert

In artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software. An expert system is divided into two subsystems: the inference engine and the knowledge base. The knowledge base represents facts and rules. The inference engine applies the rules to the known facts to deduce new facts. Inference engines can also include explanation and debugging abilities.

Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.

Natural-language understanding (NLU) or natural-language interpretation (NLI) is a subtopic of natural-language processing in artificial intelligence that deals with machine reading comprehension. Natural-language understanding is considered an AI-hard problem.

<span class="mw-page-title-main">Decision support system</span> Information system that supports business or organizational decision-making activities

A decision support system (DSS) is an information system that supports business or organizational decision-making activities. DSSs serve the management, operations and planning levels of an organization and help people make decisions about problems that may be rapidly changing and not easily specified in advance—i.e., unstructured and semi-structured decision problems. Decision support systems can be either fully computerized or human-powered, or a combination of both.

Domain knowledge is knowledge of a specific, specialised discipline or field, in contrast to general knowledge. The term is often used in reference to a more general discipline—for example, in describing a software engineer who has general knowledge of computer programming as well as domain knowledge about developing programs for a particular industry. People with domain knowledge are often regarded as specialists or experts in their field.

<span class="mw-page-title-main">Logic in computer science</span> Academic discipline

Logic in computer science covers the overlap between the field of logic and that of computer science. The topic can essentially be divided into three main areas:

The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.

A subject-matter expert (SME) is a person who has accumulated great knowledge in a particular field or topic and this level of knowledge is demonstrated by the person's degree, licensure, and/or through years of professional experience with the subject, i.e. a PhD in chemistry could be easily declared as a SME in chemistry, or a person with a Second Class Radiotelegraph License or equivalent issued by the national licensing body could be considered a SME in radiotelegraphy. A person with a master's degree in electronic engineering could be considered a subject-matter expert in electronics, or a person with many years of experience in machining could be considered a SME in machining.

Legal informatics is an area within information science.

Knowledge-based engineering (KBE) is the application of knowledge-based systems technology to the domain of manufacturing design and production. The design process is inherently a knowledge-intensive activity, so a great deal of the emphasis for KBE is on the use of knowledge-based technology to support computer-aided design (CAD) however knowledge-based techniques can be applied to the entire product lifecycle.

<span class="mw-page-title-main">Frank van Harmelen</span>

Frank van Harmelen is a Dutch computer scientist and professor in Knowledge Representation & Reasoning in the AI department at the Vrije Universiteit Amsterdam. He was scientific director of the LarKC project (2008-2011), "aiming to develop the Large Knowledge Collider, a platform for very large scale semantic web reasoning."

An intelligent decision support system (IDSS) is a decision support system that makes extensive use of artificial intelligence (AI) techniques. Use of AI techniques in management information systems has a long history – indeed terms such as "Knowledge-based systems" (KBS) and "intelligent systems" have been used since the early 1980s to describe components of management systems, but the term "Intelligent decision support system" is thought to originate with Clyde Holsapple and Andrew Whinston in the late 1970s. Examples of specialized intelligent decision support systems include Flexible manufacturing systems (FMS), intelligent marketing decision support systems and medical diagnosis systems.

Knowledge-based configuration, also referred to as product configuration or product customization, is an activity of customising a product to meet the needs of a particular customer. The product in question may consist of mechanical parts, services, and software. Knowledge-based configuration is a major application area for artificial intelligence (AI), and it is based on modelling of the configurations in a manner that allows the utilisation of AI techniques for searching for a valid configuration to meet the needs of a particular customer.

A legal expert system is a domain-specific expert system that uses artificial intelligence to emulate the decision-making abilities of a human expert in the field of law. Legal expert systems employ a rule base or knowledge base and an inference engine to accumulate, reference and produce expert knowledge on specific subjects within the legal domain.

Cognitive computing refers to technology platforms that, broadly speaking, are based on the scientific disciplines of artificial intelligence and signal processing. These platforms encompass machine learning, reasoning, natural language processing, speech recognition and vision, human–computer interaction, dialog and narrative generation, among other technologies.

Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules, objects, and frame-based ontologies.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<span class="mw-page-title-main">Explainable artificial intelligence</span> AI in which the results of the solution can be understood by humans

Explainable AI (XAI), often known as Interpretable AI, or Explainable Machine Learning (XML), either refers to an AI system over which it is possible for humans to retain intellectual oversight, or to the methods to achieve this. The main focus is usually on the reasoning behind the decisions or predictions made by the AI which are made more understandable and transparent. XAI counters the "black box" tendency of machine learning, where even the AI's designers cannot explain why it arrived at a specific decision.

<span class="mw-page-title-main">Amparo Alonso Betanzos</span> Spanish professor and researcher

Amparo Alonso-Betanzos is a Spanish computer scientist and president of the Spanish Association for Artificial Intelligence.

References

  1. "Knowledge Engineer". Techopedia. 5 February 2019.