Korsunsky Work-of-Indentation Approach

Last updated

The Korsunsky work-of-indentation approach [1] is a method of extracting values of hardness and stiffness for a small volume of material from indentation test data, first developed by Alexander M. Korsunsky.

Instead of relying on measurements or assumptions pertaining to the observed area of contact between indenter and sample, the method uses the load-displacement data registered in the Continuously Recorded Indentation Testing (CRIT) that is widely applied in nanoindentation experiments. In particular, the Korsunsky method re-defines hardness and expresses it in terms of the energy (work) associated with indenting the surface of a material by the probe. The work-of-indentation used in the analysis may refer to the total, elastic or dissipated energy, depending on the formulation. The approach can be used in the analysis of thin coatings, nano-multi-layers, nanoscale features.

The original application of the approach was developed for the problem of finding the composite hardness of a coated system. [2] The composite hardness is known to vary depending on the applied load and or indentation depth. In the Korsunsky work-of-indentation approach, the composite hardness is given by a simple expression (the “knee function”) of the relative indentation depth (the indentation depth normalized with respect to the coating thickness), and the substrate and coating hardness. The function contains a single fitting parameter, which describes a wide range of composite and indenter properties such as coating brittleness, interfacial strength, indenter geometry, etc. This model of hardness determination has been verified by numerous researchers investigating different coated systems.

This approach has undergone numerous modifications since its inception. Most recently, Jha et al. [3] found that the Korsunsky work-of-indentation approach measures the nominal hardness of a material which is defined as the maximum load divided by the area of maximum contact. The nominal hardness of a material is different than its true hardness (determined by the Oliver-Pharr method), but the two concepts are interrelated. Jha et al derived an expression that determines the true hardness of a material from its nominal counterpart. In doing so, they employed a dimensionless energy-based parameter that relates the contact depth to the maximum depth of penetration. For a soft material, the difference between the contact depth and the maximum depth of penetration is small, and hence its nominal and true hardness values are practically the same. For a harder material these two types of hardness are different as the difference between them is large. The model proposed by Jha et al in its current form is applicable when the indenter is ideally sharp or when the maximum depth of penetration is sufficiently large compared to the indenter tip radius. The advantage of the modified work-of-indentation is that it does not require the computation of contact area, which is the main limitation of the conventional Oliver-Pharr method. The approach requires further modification in order to incorporate effect of bluntness at the tip of an indenter on the measured hardness of a material.

Related Research Articles

<span class="mw-page-title-main">Rockwell scale</span> Hardness scale

The Rockwell scale is a hardness scale based on indentation hardness of a material. The Rockwell test measures the depth of penetration of an indenter under a large load compared to the penetration made by a preload. There are different scales, denoted by a single letter, that use different loads or indenters. The result is a dimensionless number noted as HRA, HRB, HRC, etc., where the last letter is the respective Rockwell scale. Larger numbers correspond to harder materials.

<span class="mw-page-title-main">Brinell scale</span> Brinell scale of hardness

The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science.

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, integrated passive devices, light-emitting diodes, optical coatings, hard coatings on cutting tools, and for both energy generation and storage. It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.

<span class="mw-page-title-main">Vickers hardness test</span> Hardness test

The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness. The basic principle, as with all common measures of hardness, is to observe a material's ability to resist plastic deformation from a standard source. The Vickers test can be used for all metals and has one of the widest scales among hardness tests. The unit of hardness given by the test is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness (DPH). The hardness number can be converted into units of pascals, but should not be confused with pressure, which uses the same units. The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force, and is therefore not pressure.

Indentation hardness tests are used in mechanical engineering to determine the hardness of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed on a macroscopic or microscopic scale.

<span class="mw-page-title-main">Diamond-like carbon</span> Class of amorphous carbon material

Diamond-like carbon (DLC) is a class of amorphous carbon material that displays some of the typical properties of diamond. DLC is usually applied as coatings to other materials that could benefit from such properties.

Nanotribology is the branch of tribology that studies friction, wear, adhesion and lubrication phenomena at the nanoscale, where atomic interactions and quantum effects are not negligible. The aim of this discipline is characterizing and modifying surfaces for both scientific and technological purposes.

In materials science, hardness is a measure of the resistance to localized plastic deformation, such as an indentation or a scratch (linear), induced mechanically either by pressing or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.

Nanoindentation, also called instrumented indentation testing, is a variety of indentation hardness tests applied to small volumes. Indentation is perhaps the most commonly applied means of testing the mechanical properties of materials. The nanoindentation technique was developed in the mid-1970s to measure the hardness of small volumes of material.

High-power impulse magnetron sputtering is a method for physical vapor deposition of thin films which is based on magnetron sputter deposition. HIPIMS utilises extremely high power densities of the order of kW⋅cm−2 in short pulses (impulses) of tens of microseconds at low duty cycle of < 10%. Distinguishing features of HIPIMS are a high degree of ionisation of the sputtered metal and a high rate of molecular gas dissociation which result in high density of deposited films. The ionization and dissociation degree increase according to the peak cathode power. The limit is determined by the transition of the discharge from glow to arc phase. The peak power and the duty cycle are selected so as to maintain an average cathode power similar to conventional sputtering (1–10 W⋅cm−2).

<span class="mw-page-title-main">Ceramography</span> Preparation and study of ceramics with optical instruments

Ceramography is the art and science of preparation, examination and evaluation of ceramic microstructures. Ceramography can be thought of as the metallography of ceramics. The microstructure is the structure level of approximately 0.1 to 100 μm, between the minimum wavelength of visible light and the resolution limit of the naked eye. The microstructure includes most grains, secondary phases, grain boundaries, pores, micro-cracks and hardness microindentations. Most bulk mechanical, optical, thermal, electrical and magnetic properties are significantly affected by the microstructure. The fabrication method and process conditions are generally indicated by the microstructure. The root cause of many ceramic failures is evident in the microstructure. Ceramography is part of the broader field of materialography, which includes all the microscopic techniques of material analysis, such as metallography, petrography and plastography. Ceramography is usually reserved for high-performance ceramics for industrial applications, such as 85–99.9% alumina (Al2O3) in Fig. 1, zirconia (ZrO2), silicon carbide (SiC), silicon nitride (Si3N4), and ceramic-matrix composites. It is seldom used on whiteware ceramics such as sanitaryware, wall tiles and dishware.

The Barcol hardness test characterizes the indentation hardness of materials through the depth of penetration of an indentor, loaded on a material sample and compared to the penetration in a reference material. The method is most often used for composite materials such as reinforced thermosetting resins or to determine how much a resin or plastic has cured. The test complements the measurement of glass transition temperature, as an indirect measure of the degree of cure of a composite. It is inexpensive and quick, and provides information on the cure throughout a part.

Anti-scratch coating is a type of protective coating or film applied to an object's surface for mitigation against scratches. Scratches are small surface-level cuts left on a surface following interaction with a sharper object. Anti-scratch coatings provide scratch resistances by containing tiny microscopic materials with scratch-resistant properties. Scratch resistance materials come in the form of additives, filters, and binders. Besides materials, scratch resistances is impacted by coating formation techniques. Scratch resistance is measured using the Scratch-hardness test. Commercially, anti-scratch coatings are used in the automotive, optical, photographic, and electronics industries, where resale and/or functionality is impaired by scratches. Anti-scratch coatings are of growing importance as traditional scratch resistance materials like metals and glass are replaced with low-scratch resistant plastics.

Brinelling is the permanent indentation of a hard surface. It is named after the Brinell scale of hardness, in which a small ball is pushed against a hard surface at a preset level of force, and the depth and diameter of the mark indicates the Brinell hardness of the surface. Brinelling is permanent plastic deformation of a surface, and usually occurs while two surfaces in contact are stationary and the material yield strength has been exceeded.

<span class="mw-page-title-main">Meyer hardness test</span>

The Meyer hardness test is a hardness test based upon projected area of an impression. The hardness, , is defined as the maximum load, divided by the projected area of the indent, .

<span class="mw-page-title-main">Nanoindenter</span>

A nanoindenter is the main component for indentation hardness tests used in nanoindentation. Since the mid-1970s nanoindentation has become the primary method for measuring and testing very small volumes of mechanical properties. Nanoindentation, also called depth sensing indentation or instrumented indentation, gained popularity with the development of machines that could record small load and displacement with high accuracy and precision. The load displacement data can be used to determine modulus of elasticity, hardness, yield strength, fracture toughness, scratch hardness and wear properties.

Combustion chemical vapor deposition (CCVD) is a chemical process by which thin-film coatings are deposited onto substrates in the open atmosphere.

Materials that are used for biomedical or clinical applications are known as biomaterials. The following article deals with fifth generation biomaterials that are used for bone structure replacement. For any material to be classified for biomedical applications, three requirements must be met. The first requirement is that the material must be biocompatible; it means that the organism should not treat it as a foreign object. Secondly, the material should be biodegradable ; the material should harmlessly degrade or dissolve in the body of the organism to allow it to resume natural functioning. Thirdly, the material should be mechanically sound; for the replacement of load-bearing structures, the material should possess equivalent or greater mechanical stability to ensure high reliability of the graft.

<span class="mw-page-title-main">Indentation size effect</span> Property of materials at small scales

The indentation size effect (ISE) is the observation that hardness tends to increase as the indent size decreases at small scales. When an indent is created during material testing, the hardness of the material is not constant. At the small scale, materials will actually be harder than at the macro-scale. For the conventional indentation size effect, the smaller the indentation, the larger the difference in hardness. The effect has been seen through nanoindentation and microindentation measurements at varying depths. Dislocations increase material hardness by increasing flow stress through dislocation blocking mechanisms. Materials contain statistically stored dislocations (SSD) which are created by homogeneous strain and are dependent upon the material and processing conditions. Geometrically necessary dislocations (GND) on the other hand are formed, in addition to the dislocations statistically present, to maintain continuity within the material.

Indentation plastometry is the idea of using an indentation-based procedure to obtain (bulk) mechanical properties in the form of stress-strain relationships in the plastic regime. Since indentation is a much easier and more convenient procedure than conventional tensile testing, with far greater potential for mapping of spatial variations, this is an attractive concept.

References

  1. Korsunsky, A.M.; McGurk, M.R.; Bull, S.J.; Page, T.F. (1998). "On the hardness of coated systems". Surface and Coatings Technology. 99 (1–2) (published 5 February 1998): 171–183. doi:10.1016/S0257-8972(97)00522-7.
  2. Tuck, Jonathan R.; Korunsky, Alexander M.; Bull, Steve J.; Davidson, Rob I. (2001). "On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems". Surface and Coatings Technology. 137 (2–3) (published 15 March 2001): 217–224. doi:10.1016/S0257-8972(00)01063-X.
  3. Jha, Kaushal K.; Suksawang, Nakin; Agarwal, Arvind (2014). "A new insight into the work-of-indentation approach used in the evaluation of material's hardness from nanoindentation measurement with Berkovich indenter". Computational Materials Science . 85 (published 1 April 2014): 32–37. doi:10.1016/j.commatsci.2013.12.005.