Kostant polynomial

Last updated

In mathematics, the Kostant polynomials, named after Bertram Kostant, provide an explicit basis of the ring of polynomials over the ring of polynomials invariant under the finite reflection group of a root system.

Contents

Background

If the reflection group W corresponds to the Weyl group of a compact semisimple group K with maximal torus T, then the Kostant polynomials describe the structure of the de Rham cohomology of the generalized flag manifold K/T, also isomorphic to G/B where G is the complexification of K and B is the corresponding Borel subgroup. Armand Borel showed that its cohomology ring is isomorphic to the quotient of the ring of polynomials by the ideal generated by the invariant homogeneous polynomials of positive degree. This ring had already been considered by Claude Chevalley in establishing the foundations of the cohomology of compact Lie groups and their homogeneous spaces with André Weil, Jean-Louis Koszul and Henri Cartan; the existence of such a basis was used by Chevalley to prove that the ring of invariants was itself a polynomial ring. A detailed account of Kostant polynomials was given by Bernstein, Gelfand & Gelfand (1973) and independently Demazure (1973) as a tool to understand the Schubert calculus of the flag manifold. The Kostant polynomials are related to the Schubert polynomials defined combinatorially by Lascoux & Schützenberger (1982) for the classical flag manifold, when G = SL(n,C). Their structure is governed by difference operators associated to the corresponding root system.

Steinberg (1975) defined an analogous basis when the polynomial ring is replaced by the ring of exponentials of the weight lattice. If K is simply connected, this ring can be identified with the representation ring R(T) and the W-invariant subring with R(K). Steinberg's basis was again motivated by a problem on the topology of homogeneous spaces; the basis arises in describing the T-equivariant K-theory of K/T.

Definition

Let Φ be a root system in a finite-dimensional real inner product space V with Weyl group W. Let Φ+ be a set of positive roots and Δ the corresponding set of simple roots. If α is a root, then sα denotes the corresponding reflection operator. Roots are regarded as linear polynomials on V using the inner product α(v) = (α,v). The choice of Δ gives rise to a Bruhat order on the Weyl group determined by the ways of writing elements minimally as products of simple root reflection. The minimal length for an element s is denoted . Pick an element v in V such that α(v) > 0 for every positive root.

If αi is a simple root with reflection operator si

then the corresponding divided difference operator is defined by

If and s has reduced expression

then

is independent of the reduced expression. Moreover

if and 0 otherwise.

If w0 is the longest element of W, the element of greatest length or equivalently the element sending Φ+ to −Φ+, then

More generally

for some constants as,t.

Set

and

Then Ps is a homogeneous polynomial of degree .

These polynomials are the Kostant polynomials.

Properties

Theorem. The Kostant polynomials form a free basis of the ring of polynomials over the W-invariant polynomials.

In fact the matrix

is unitriangular for any total order such that st implies .

Hence

Thus if

with as invariant under W, then

Thus

where

another unitriangular matrix with polynomial entries. It can be checked directly that as is invariant under W.

In fact δi satisfies the derivation property

Hence

Since

or 0, it follows that

so that by the invertibility of N

for all i, i.e. at is invariant under W.

Steinberg basis

As above let Φ be a root system in a real inner product space V, and Φ+ a subset of positive roots. From these data we obtain the subset Δ = {α1, α2, …, αn} of the simple roots, the coroots

and the fundamental weights λ1, λ2, ..., λn as the dual basis of the coroots.

For each element s in W, let Δs be the subset of Δ consisting of the simple roots satisfying s−1α < 0, and put

where the sum is calculated in the weight lattice P.

The set of linear combinations of the exponentials eμ with integer coefficients for μ in P becomes a ring over Z isomorphic to the group algebra of P, or equivalently to the representation ring R(T) of T, where T is a maximal torus in K, the simply connected, connected compact semisimple Lie group with root system Φ. If W is the Weyl group of Φ, then the representation ring R(K) of K can be identified with R(T)W.

Steinberg's theorem. The exponentials λs (sinW) form a free basis for the ring of exponentials over the subring ofW-invariant exponentials.

Let ρ denote the half sum of the positive roots, and A denote the antisymmetrisation operator

The positive roots β with sβ positive can be seen as a set of positive roots for a root system on a subspace of V; the roots are the ones orthogonal to s.λs. The corresponding Weyl group equals the stabilizer of λs in W. It is generated by the simple reflections sj for which sαj is a positive root.

Let M and N be the matrices

where ψs is given by the weight s−1ρ - λs. Then the matrix

is triangular with respect to any total order on W such that st implies . Steinberg proved that the entries of B are W-invariant exponential sums. Moreover its diagonal entries all equal 1, so it has determinant 1. Hence its inverse C has the same form. Define

If χ is an arbitrary exponential sum, then it follows that

with as the W-invariant exponential sum

Indeed this is the unique solution of the system of equations

Related Research Articles

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

<span class="mw-page-title-main">Fabry–Pérot interferometer</span> Optical device with parallel mirrors

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

<span class="mw-page-title-main">Root system</span> Geometric arrangements of points, foundational to Lie theory

In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory. Finally, root systems are important for their own sake, as in spectral graph theory.

<span class="mw-page-title-main">Weyl group</span> Subgroup of a root systems isometry group

In mathematics, in particular the theory of Lie algebras, the Weyl group of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.

In mathematics, specifically algebraic topology, the cohomology ring of a topological space X is a ring formed from the cohomology groups of X together with the cup product serving as the ring multiplication. Here 'cohomology' is usually understood as singular cohomology, but the ring structure is also present in other theories such as de Rham cohomology. It is also functorial: for a continuous mapping of spaces one obtains a ring homomorphism on cohomology rings, which is contravariant.

In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p.

In mathematics and theoretical physics, a locally compact quantum group is a relatively new C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra (1951), is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In mathematics, generalized Verma modules are a generalization of a (true) Verma module, and are objects in the representation theory of Lie algebras. They were studied originally by James Lepowsky in the 1970s. The motivation for their study is that their homomorphisms correspond to invariant differential operators over generalized flag manifolds. The study of these operators is an important part of the theory of parabolic geometries.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

In representation theory, a branch of mathematics, the Kostant partition function, introduced by Bertram Kostant, of a root system is the number of ways one can represent a vector (weight) as a non-negative integer linear combination of the positive roots . Kostant used it to rewrite the Weyl character formula as a formula for the multiplicity of a weight of an irreducible representation of a semisimple Lie algebra. An alternative formula, that is more computationally efficient in some cases, is Freudenthal's formula.

In mathematics, a Demazure module, introduced by Demazure, is a submodule of a finite-dimensional representation generated by an extremal weight space under the action of a Borel subalgebra. The Demazure character formula, introduced by Demazure, gives the characters of Demazure modules, and is a generalization of the Weyl character formula. The dimension of a Demazure module is a polynomial in the highest weight, called a Demazure polynomial.

In mathematics, a representation on coordinate rings is a representation of a group on coordinate rings of affine varieties.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References