Kowarski syndrome

Last updated
Kowarski syndrome
Other namesShort stature due to growth hormone qualitative anomaly
Autosomal recessive - en.svg
This condition is inherited in an autosomal recessive manner.

Kowarski syndrome [1] describes cases of growth failure (height and bone age two standard deviations below the mean for age), despite the presence of normal or slightly high blood growth hormone by radioimmunoassay (RIA-GH) and low serum IGF1 (formerly called somatomedin), and who exhibit a significant increase in growth rate following recombinant GH therapy. [2]

Contents

Cause

Allen Avinoam Kowarski et al. [3] described the first two cases of the Kowarski syndrome in 1978. The group speculated that their patients' growth impairment was caused by a mutation in the growth hormone gene, which altered the structure of their secreted growth hormone, reducing its biological activity while retaining its ability to bind the antibodies used in the RIA-GH. Their RIA-GH measured growth hormone of reduced bioactivity. The children retained the ability to respond to treatment with active growth hormone.[ citation needed ]

The speculation of Kowarski et al. was confirmed by Valenta et al. in 1985, Takahshi et al. in 1996 and 1997 and Besson et al. in 2005. Valenta et al. [4] studied a case of Kowarski syndrome where they confirmed a structural abnormality of the growth hormone molecule. 60 to 90% of circulating growth hormone of the patient was in the form of tetramers and dimers (normal, 14% to 39% in plasma) and the patients' growth hormone polymers were abnormally resistant to conversion into monomers by urea.

Takahashi et al. [5] reported a case of a boy with short stature who was heterozygous for a mutation in the GH1 gene. In this child, growth hormone not only could not activate the GH receptor (GHR) but also inhibited the action of wild type GH because of its greater affinity for GHR and GH-binding protein (GHBP) that is derived from the extracellular domain of the GHR. Thus, a dominant-negative effect was observed.[ citation needed ]

Takahashi et al. [6] demonstrated in a girl with short stature, a biologically inactive growth hormone resulting from a heterozygous mutation in the GH1 gene. At age 3 years, the girl's height was 3.6 standard deviations below the mean for age and sex. Bone age was delayed by 1.5 years. She had a prominent forehead and a hypoplastic nasal bridge with normal body proportions. She showed lack of growth hormone action despite high immunoassayable GH levels in serum and marked catch-up growth to exogenous GH administration. Results of other studies were compatible with the production of a bioinactive GH, which prevented dimerization of the growth hormone receptor, a crucial step in GH signal transduction.[ citation needed ]

Besson et al. [7] described in 1955 a Serbian patient with Kowarski syndrome who was homozygous for a mutation in the GH1 gene that disrupted the first disulfide bridge in growth hormone. The parents were each heterozygous for the mutation and were of normal stature.[ citation needed ]

Diagnosis

Diagnostic criteria

The discovery of the Kowarski syndrome created a dilemma. The first diagnostic test for the syndrome was subjecting the suspected children to six month of growth hormone therapy. Kowarski syndrome was assumed to be a very rare disorder (officially recognized as an "orphan disease"). Researchers could not justify subjecting children to a trial period of growth hormone therapy to confirm the diagnosis of a rare syndrome. There is a need for a reliable and practical diagnostic procedure for the syndrome.[ citation needed ]

Reliability of testing

The standard test for growth hormone deficiency is the growth hormone stimulation test. Peak levels of growth hormone below normal are considered confirmation of a growth hormone deficiency. Growth-impaired children with a normal stimulation test were considered suspect for having the Kowarski syndrome that may benefit from treatment with growth hormone.[ citation needed ]

Zadik et al. [8] reported in 1990 that the growth hormone stimulation test is not reliable, suggesting the use of the more reliable 24-hour integrated concentration of growth hormone (IC-GH) as a better test. In 1995, it was also suggested [9] that some cases of the neurosecretory growth failure syndrome might have the Kowarski syndrome.

Albertsson-Wikland Kerstin confirmed in 1992 [10] that the IC-GH test is a reproducible test for growth hormone deficiency and Carel et al. confirmed in 1997 [11] that the reliability of the growth hormone stimulation tests was poor.

A 1987 study by Bistrizer et al. [12] suggested a diagnostic procedure that may be used to diagnose the Kowarski syndrome. Their study was based on the requirement for the growth hormone molecule to bind a specific binding molecule on the wall of the responsive cells to elicit its activity. Their study demonstrated a decrease ability of the growth hormone from children with the Kowarski syndrome to bind with living IM-9 cells. The test involved measuring the ratio between the levels of growth hormone by a radioreceptor assay (RRA-GH) to the level of growth hormone determined by the established radioimmunoassay (RIA-GH). The study found that the RRA-GH/RIA-GH ratio in NS subjects was normal but significantly below normal (P<0.005) in the Kowarski syndrome patients. The authors proposed the use of their test for the diagnosis of the Kowarski syndrome.

Bistrizer, Chalew and Kowarski demonstrated in 1995 [9] that a modified RRA-GH/RIA-GH ratio test was a predictor for the responsiveness of growth-impaired children to growth hormone therapy.

The RRA-GH/RIA-GH ratio assay proposed by Bistrizer et al. [9] can be used for screening of patients who may have the Kowarski syndrome thus more likely to respond to Growth Hormone therapy. Advances in the methodology for identifying spot mutations in the DNA of individuals demonstrated that the "Kowarski Syndrome is caused by various mutations in the GH1 gene (17q22-q24) that result in structural GH anomalies and a biologically inactive molecule." Testing individual patient for such mutation is offered on the Internet. [13]

Related Research Articles

<span class="mw-page-title-main">Androgen insensitivity syndrome</span> Medical condition

Androgen insensitivity syndrome (AIS) is a condition involving the inability to respond to androgens, typically due to androgen receptor dysfunction.

<span class="mw-page-title-main">Thyroxine-binding globulin</span> Mammalian protein found in Homo sapiens

Thyroxine-binding globulin (TBG) is a globulin protein that in humans is encoded by the SERPINA7 gene. TBG binds thyroid hormones in circulation. It is one of three transport proteins (along with transthyretin and serum albumin) responsible for carrying the thyroid hormones thyroxine (T4) and triiodothyronine (T3) in the bloodstream. Of these three proteins, TBG has the highest affinity for T4 and T3 but is present in the lowest concentration relative to transthyretin and albumin, which also bind T3 and T4 in circulation. Despite its low concentration, TBG carries the majority of T4 in the blood plasma. Due to the very low concentration of T4 and T3 in the blood, TBG is rarely more than 25% saturated with its ligand. Unlike transthyretin and albumin, TBG has a single binding site for T4/T3. TBG is synthesized primarily in the liver as a 54-kDa protein. In terms of genomics, TBG is a serpin; however, it has no inhibitory function like many other members of this class of proteins.

<span class="mw-page-title-main">Growth hormone deficiency</span> Medical condition

Growth hormone deficiency (GHD), or human growth hormone deficiency, is a medical condition resulting from not enough growth hormone (GH). Generally the most noticeable symptom is that an individual attains a short height. Newborns may also present low blood sugar or a small penis size. In adults there may be decreased muscle mass, high cholesterol levels, or poor bone density.

Growth hormone therapy refers to the use of growth hormone (GH) as a prescription medication—it is one form of hormone therapy. Growth hormone is a peptide hormone secreted by the pituitary gland that stimulates growth and cell reproduction. In the past, growth hormone was extracted from human pituitary glands. Growth hormone is now produced by recombinant DNA technology and is prescribed for a variety of reasons. GH therapy has been a focus of social and ethical controversies for 50 years.

<span class="mw-page-title-main">Insulin-like growth factor 1</span> Protein found in humans

Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults. In the 1950s IGF-1 was called "sulfation factor" because it stimulated sulfation of cartilage in vitro, and in the 1970s due to its effects it was termed "nonsuppressible insulin-like activity" (NSILA).

<span class="mw-page-title-main">Thyroid hormone resistance</span> Medical condition

Thyroid hormone resistance (also resistance to thyroid hormone (RTH), and sometimes Refetoff syndrome) describes a rare syndrome in which the thyroid hormone levels are elevated but the thyroid stimulating hormone (TSH) level is not suppressed, or not completely suppressed as would be expected. The first report of the condition appeared in 1967. Essentially this is decreased end organ responsiveness to thyroid hormones. A new term "impaired sensitivity to thyroid hormone" has been suggested in March 2014 by Refetoff et al.

Isolated hypogonadotropic hypogonadism (IHH), also called idiopathic or congenital hypogonadotropic hypogonadism (CHH), as well as isolated or congenital gonadotropin-releasing hormone deficiency (IGD), is a condition which results in a small subset of cases of hypogonadotropic hypogonadism (HH) due to deficiency in or insensitivity to gonadotropin-releasing hormone (GnRH) where the function and anatomy of the anterior pituitary is otherwise normal and secondary causes of HH are not present.

Pseudohypoparathyroidism is a rare autosomal dominant genetic condition associated primarily with resistance to the parathyroid hormone. Those with the condition have a low serum calcium and high phosphate, but the parathyroid hormone level (PTH) is inappropriately high. Its pathogenesis has been linked to dysfunctional G proteins. Pseudohypoparathyroidism is a very rare disorder, with estimated prevalence between 0.3 and 1.1 cases per 100,000 population depending on geographic location.

Pseudopseudohypoparathyroidism (PPHP) is an inherited disorder, named for its similarity to pseudohypoparathyroidism in presentation. It is more properly Albright hereditary osteodystrophy, although without resistance of parathyroid hormone (PTH), as frequently seen in that affliction. The term is used to describe a condition where the individual has the phenotypic appearance of pseudohypoparathyroidism type 1a, but has normal labs, including calcium and PTH.

<span class="mw-page-title-main">Laron syndrome</span> Medical condition

Laron syndrome (LS), also known as growth hormone insensitivity or growth hormone receptor deficiency (GHRD), is an autosomal recessive disorder characterized by a lack of insulin-like growth factor 1 production in response to growth hormone. It is usually caused by inherited growth hormone receptor (GHR) mutations.

<span class="mw-page-title-main">HESX1</span> Protein-coding gene in the species Homo sapiens

Homeobox expressed in ES cells 1, also known as homeobox protein ANF, is a homeobox protein that in humans is encoded by the HESX1 gene.

<span class="mw-page-title-main">Thyroid hormone receptor beta</span> Protein-coding gene in the species Homo sapiens

Thyroid hormone receptor beta (TR-beta) also known as nuclear receptor subfamily 1, group A, member 2 (NR1A2), is a nuclear receptor protein that in humans is encoded by the THRB gene.

<span class="mw-page-title-main">PROP1</span> Human gene

Homeobox protein prophet of PIT-1 is a protein that in humans is encoded by the PROP1 gene.

<span class="mw-page-title-main">Growth hormone 2</span> Variant of somatotropin produced by placenta

Growth hormone 2 (GH2), also known more commonly as placental growth hormone (PGH) or growth hormone variant (GH-V), is a protein that in humans is encoded by the GH2 gene. It is produced by and secreted from the placenta during pregnancy, and becomes the predominant form of growth hormone (GH) in the body during this time. Its cogener is growth hormone 1 (GH1), or pituitary growth hormone.

<span class="mw-page-title-main">Luteinizing hormone beta polypeptide</span> Protein-coding gene in the species Homo sapiens

Luteinizing hormone subunit beta also known as lutropin subunit beta or LHβ is a polypeptide that in association with an alpha subunit common to all gonadotropin hormones forms the reproductive signaling molecule luteinizing hormone. In humans it is encoded by the LHB gene.

<span class="mw-page-title-main">TSHB</span> Protein-coding gene in the species Homo sapiens

Thyroid stimulating hormone, beta also known as TSHB is a protein which in humans is encoded by the TSHB gene.

<span class="mw-page-title-main">Aromatase deficiency</span> Medical condition

Aromatase deficiency is a rare condition characterized by extremely low levels or complete absence of the enzyme aromatase activity in the body. It is an autosomal recessive disease resulting from various mutations of gene CYP19 (P450arom) which can lead to ambiguous genitalia and delayed puberty in females, continued linear growth into adulthood and osteoporosis in males and virilization in pregnant mothers. As of 2020, fewer than 15 cases have been identified in genetically male individuals and at least 30 cases in genetically female individuals.

<span class="mw-page-title-main">Complete androgen insensitivity syndrome</span> Medical condition

Complete androgen insensitivity syndrome (CAIS) is an AIS condition that results in the complete inability of the cell to respond to androgens. As such, the insensitivity to androgens is only clinically significant when it occurs in individuals who are exposed to significant amounts of testosterone at some point in their lives. The unresponsiveness of the cell to the presence of androgenic hormones prevents the masculinization of male genitalia in the developing fetus, as well as the development of male secondary sexual characteristics at puberty, but does allow, without significant impairment, female genital and sexual development in those with the condition.

<span class="mw-page-title-main">Mild androgen insensitivity syndrome</span> Medical condition

Mild androgen insensitivity syndrome (MAIS) is a condition that results in a mild impairment of the cell's ability to respond to androgens. The degree of impairment is sufficient to impair spermatogenesis and / or the development of secondary sexual characteristics at puberty in males, but does not affect genital differentiation or development. Female genital and sexual development is not significantly affected by the insensitivity to androgens; as such, MAIS is only diagnosed in males. The clinical phenotype associated with MAIS is a normal male habitus with mild spermatogenic defect and / or reduced secondary terminal hair.

<span class="mw-page-title-main">Fertile eunuch syndrome</span> Medical condition

The fertile eunuch syndrome or Pasqualini syndrome is a cause of hypogonadotropic hypogonadism caused by a luteinizing hormone deficiency. It is characterized by hypogonadism with spermatogenesis. Pasqualini and Bur published the first case of eunuchoidism with preserved spermatogenesis in 1950 in la Revista de la Asociación Médica Argentina. The hypoandrogenism with spermatogenesis syndrome included:

References

  1. "OMIM Entry - # 262650 - KOWARSKI SYNDROME". omim.org.
  2. Mullis, Primus-E. (2012). Developmental biology of GH secretion, growth and treatment. Endocrine development. Basel Paris: Karger. p. 75. ISBN   978-3-318-02244-5.{{cite book}}: CS1 maint: date and year (link)
  3. Kowarski AA, Schneider J, Ben-Galim E, Weldon VV, Daughaday WH (August 1978). "Growth failure with normal serum RIA-GH and low somatomedin activity: somatomedin restoration and growth acceleration after exogenous GH". J. Clin. Endocrinol. Metab. 47 (2): 461–4. doi:10.1210/jcem-47-2-461. PMID   263308.
  4. Valenta LJ, Sigel MB, Lesniak MA, Elias AN, Lewis UJ, Friesen HG, Kershnar AK (January 1985). "Pituitary dwarfism in a patient with circulating abnormal growth hormone polymers". N. Engl. J. Med. 312 (4): 214–7. doi:10.1056/NEJM198501243120405. PMID   3965948.
  5. Takahashi, Yutaka; Kaji, Hidesuke; Okimura, Yasuhiko; Goji, Katsumi; Abe, Hiromi; Chihara, Kazuo (1996). "Short Stature Caused by a Mutant Growth Hormone". New England Journal of Medicine. 334 (7): 432–436. doi: 10.1056/NEJM199602153340704 . hdl: 20.500.14094/D1001477 . ISSN   0028-4793. PMID   8552145.
  6. Takahashi Y, Shirono H, Arisaka O, Takahashi K, Yagi T, Koga J, Kaji H, Okimura Y, Abe H, Tanaka T, Chihara K (September 1997). "Biologically inactive growth hormone caused by an amino acid substitution". J. Clin. Invest. 100 (5): 1159–65. doi:10.1172/JCI119627. PMC   508291 . PMID   9276733.
  7. Besson A, Salemi S, Deladoëy J, Vuissoz JM, Eblé A, Bidlingmaier M, Bürgi S, Honegger U, Flück C, Mullis PE (May 2005). "Short stature caused by a biologically inactive mutant growth hormone (GH-C53S)". J. Clin. Endocrinol. Metab. 90 (5): 2493–9. doi: 10.1210/jc.2004-1838 . PMID   15713716.
  8. Zadik Z, Chalew SA, Gilula Z, Kowarski AA (November 1990). "Reproducibility of growth hormone testing procedures: a comparison between 24-hour integrated concentration and pharmacological stimulation". J. Clin. Endocrinol. Metab. 71 (5): 1127–30. doi:10.1210/jcem-71-5-1127. PMID   2229276.
  9. 1 2 3 Bistritzer T, Chalew SA, Kowarski AA (1995). "Growth failure with plasma GH that is normal by RIA but low by radioreceptor assay: responsiveness to exogenous GH". Horm. Res. 43 (6): 261–5. doi:10.1159/000184306. PMID   7607611.
  10. Albertsson-Wikland K, Rosberg S (February 1992). "Reproducibility of 24-h growth hormone profiles in children". Acta Endocrinol. 126 (2): 109–12. doi:10.1530/acta.0.1260109. PMID   1543014.
  11. Carel JC, Tresca JP, Letrait M, Chaussain JL, Lebouc Y, Job JC, Coste J (July 1997). "Growth hormone testing for the diagnosis of growth hormone deficiency in childhood: a population register-based study". J. Clin. Endocrinol. Metab. 82 (7): 2117–21. doi: 10.1210/jcem.82.7.4106 . PMID   9215281.
  12. Bistritzer, Tzvy; Chalew, Stuart A; Lovohik, Judith C; Kowarski, A Avlnoam (1987). "Decreased Growth Hormone (Gh) Binding to Im-9 Cells in Children with Biologically Inactive Gh Syndrome (Bi)". Pediatric Research. 21 (4): 244A. doi: 10.1203/00006450-198704010-00461 . ISSN   0031-3998.
  13. "Short stature due to growth hormone qualitative anomaly". orphanet.