Krogh model

Last updated

Krogh model is a scientific model of mass transfer explaining the concentration of molecular oxygen through a cylindrical capillary tube as a function of a changing position over the capillary tube's length. It was first conceptualized by August Krogh in 1919 with the help of Agner Krarup Erlang to describe oxygen supply in living tissues from human blood vessels. [1] [2]

Contents

Its applicability has been extended to various academic fields, and has been successful explaining drug diffusion, water transport, and ice formation in tissues. [3]

Mathematical modeling

Krogh model is derived by applying Fick's laws of diffusion and the law of conservation of mass over a radial interval

Limitations

Although Krogh model is a good approximation, it underestimates oxygen consumption [3] because the cylinder model does not include all the tissue surrounding the capillary. [4]

Notes

  1. Wei & Anderson 1995 , p. 176.
  2. Larsen, Erik; Hoffman, Else; Hedrick, Michael; Wang, Tobias (2021). "August Krogh's contribution to the rise of physiology during the first half the 20th century". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 256: 110931. doi:10.1016/j.cbpa.2021.110931. PMID   33647460.
  3. 1 2 Grinberg, O; Novozhilov, B; Grinberg, S; Friedman, B; Swartz, HM (2005). Axial oxygen diffusion in the Krogh model: modifications to account for myocardial oxygen tension in isolated perfused rat hearts measured by EPR oximetry. Adv Exp Med Biol. Vol. 566. pp. 127–34. doi:10.1007/0-387-26206-7_18. PMID   16594144.
  4. Truskey, Fan & Katz 2009 , p. 643.

Related Research Articles

<span class="mw-page-title-main">Agner Krarup Erlang</span> Danish mathematician, statistician and engineer

Agner Krarup Erlang was a Danish mathematician, statistician and engineer, who invented the fields of traffic engineering and queueing theory.

<span class="mw-page-title-main">Facilitated diffusion</span> Biological process

Facilitated diffusion is the process of spontaneous passive transport of molecules or ions across a biological membrane via specific transmembrane integral proteins. Being passive, facilitated transport does not directly require chemical energy from ATP hydrolysis in the transport step itself; rather, molecules and ions move down their concentration gradient according to the principles of diffusion.

<span class="mw-page-title-main">Blood vessel</span> Tubular structure carrying blood

Blood vessels are the tubular structures of a circulatory system that transport blood throughout a vertebrate's body. Blood vessels transport blood cells, nutrients, and oxygen to most of the tissues of a body. They also take waste and carbon dioxide away from the tissues. Some tissues such as cartilage, epithelium, and the lens and cornea of the eye are not supplied with blood vessels and are termed avascular.

<span class="mw-page-title-main">Capillary</span> Smallest type of blood vessel

A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the site of the exchange of many substances from the surrounding interstitial fluid, and they convey blood from the smallest branches of the arteries (arterioles) to those of the veins (venules). Other substances which cross capillaries include water, oxygen, carbon dioxide, urea, glucose, uric acid, lactic acid and creatinine. Lymph capillaries connect with larger lymph vessels to drain lymphatic fluid collected in microcirculation.

<span class="mw-page-title-main">Angiogenesis</span> Blood vessel formation, when new vessels emerge from existing vessels

Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature mainly by processes of sprouting and splitting, but processes such as coalescent angiogenesis, vessel elongation and vessel cooption also play a role. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise. The first vessels in the developing embryo form through vasculogenesis, after which angiogenesis is responsible for most, if not all, blood vessel growth during development and in disease.

Diffusing capacity of the lung (DL) measures the transfer of gas from air in the lung, to the red blood cells in lung blood vessels. It is part of a comprehensive series of pulmonary function tests to determine the overall ability of the lung to transport gas into and out of the blood. DL, especially DLCO, is reduced in certain diseases of the lung and heart. DLCO measurement has been standardized according to a position paper by a task force of the European Respiratory and American Thoracic Societies.

<span class="mw-page-title-main">August Krogh</span> Danish physiologist (1874–1949)

Schack August Steenberg Krogh was a Danish professor at the department of zoophysiology at the University of Copenhagen from 1916 to 1945. He contributed a number of fundamental discoveries within several fields of physiology, and is famous for developing Krogh's principle.

<span class="mw-page-title-main">Gas exchange</span> Process by which gases diffuse through a biological membrane

Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.

<span class="mw-page-title-main">Passive transport</span> Transport that does not require energy

Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes. Fundamentally, substances follow Fick's first law, and move from an area of high concentration to an area of low concentration because this movement increases the entropy of the overall system. The rate of passive transport depends on the permeability of the cell membrane, which, in turn, depends on the organization and characteristics of the membrane lipids and proteins. The four main kinds of passive transport are simple diffusion, facilitated diffusion, filtration, and/or osmosis.

<span class="mw-page-title-main">Microcirculation</span> Circulation of the blood in the smallest blood vessels

The microcirculation is the circulation of the blood in the smallest blood vessels, the microvessels of the microvasculature present within organ tissues. The microvessels include terminal arterioles, metarterioles, capillaries, and venules. Arterioles carry oxygenated blood to the capillaries, and blood flows out of the capillaries through venules into veins.

<span class="mw-page-title-main">Extracellular fluid</span> Body fluid outside the cells of a multicellular organism

In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 50–60% of total body weight; women and the obese typically have a lower percentage than lean men. Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. The main component of the extracellular fluid is the interstitial fluid that surrounds cells.

In physiology, respiration is the transport of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction to the environment by a respiratory system.

<span class="mw-page-title-main">Perfusion</span> Passage of fluid through the circulatory or lymphatic system to an organ or tissue

Perfusion is the passage of fluid through the circulatory system or lymphatic system to an organ or a tissue, usually referring to the delivery of blood to a capillary bed in tissue. Perfusion may also refer to fixation via perfusion, used in histological studies. Perfusion is measured as the rate at which blood is delivered to tissue, or volume of blood per unit time per unit tissue mass. The SI unit is m3/(s·kg), although for human organs perfusion is typically reported in ml/min/g. The word is derived from the French verb perfuser, meaning to "pour over or through". All animal tissues require an adequate blood supply for health and life. Poor perfusion (malperfusion), that is, ischemia, causes health problems, as seen in cardiovascular disease, including coronary artery disease, cerebrovascular disease, peripheral artery disease, and many other conditions.

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia is usually caused by pulmonary disease. Sometimes the concentration of oxygen in the air is decreased leading to hypoxemia.

<span class="mw-page-title-main">Torkel Weis-Fogh</span> Danish insect flight expert (1922–1975)

Torkel Weis-Fogh was a Danish zoologist and Professor at the University of Cambridge and the University of Copenhagen. He is best known for his contributions to the understanding of insect flight, especially the clap and fling mechanism used by very small insects. James Lighthill named this "the Weis-Fogh mechanism of lift generation".

In physiology, isobaric counterdiffusion (ICD) is the diffusion of different gases into and out of tissues while under a constant ambient pressure, after a change of gas composition, and the physiological effects of this phenomenon. The term inert gas counterdiffusion is sometimes used as a synonym, but can also be applied to situations where the ambient pressure changes. It has relevance in mixed gas diving and anesthesiology.

<span class="mw-page-title-main">Vascular remodelling in the embryo</span> Biological process

Vascular remodelling is a process which occurs when an immature heart begins contracting, pushing fluid through the early vasculature. The process typically begins at day 22, and continues to the tenth week of human embryogenesis. This first passage of fluid initiates a signal cascade and cell movement based on physical cues including shear stress and circumferential stress, which is necessary for the remodelling of the vascular network, arterial-venous identity, angiogenesis, and the regulation of genes through mechanotransduction. This embryonic process is necessary for the future stability of the mature vascular network.

<span class="mw-page-title-main">History of decompression research and development</span> Chronological list of notable events in the history of diving decompression.

Decompression in the context of diving derives from the reduction in ambient pressure experienced by the diver during the ascent at the end of a dive or hyperbaric exposure and refers to both the reduction in pressure and the process of allowing dissolved inert gases to be eliminated from the tissues during this reduction in pressure.

<span class="mw-page-title-main">Decompression theory</span> Theoretical modelling of decompression physiology

Decompression theory is the study and modelling of the transfer of the inert gas component of breathing gases from the gas in the lungs to the tissues and back during exposure to variations in ambient pressure. In the case of underwater diving and compressed air work, this mostly involves ambient pressures greater than the local surface pressure, but astronauts, high altitude mountaineers, and travellers in aircraft which are not pressurised to sea level pressure, are generally exposed to ambient pressures less than standard sea level atmospheric pressure. In all cases, the symptoms caused by decompression occur during or within a relatively short period of hours, or occasionally days, after a significant pressure reduction.

<span class="mw-page-title-main">Physiology of decompression</span> The physiological basis for decompression theory and practice

The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure. It involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.

References