Kyle Biggar

Last updated
Kyle Biggar
Born1986
AwardsJohn Charles Polanyi Prize (2016)

Kyle K. Biggar (born 1986) is a Canadian biochemist and molecular biologist. He has been a professor of biochemistry, chemistry, and biology at Carleton University in Ottawa, Canada since 2017. Biggar was the 2016 recipient of the John Charles Polanyi Prize for his outstanding work in early career research. [1]

Contents

Biography

Kyle Kevin Biggar was born in 1986 in Summerside, Prince Edward Island. Biggar studied Biology and Chemistry at St. Francis Xavier University (B.Sc) in Antigonish, Nova-Scotia, Canada, and Biology and Biochemistry at Carleton University (Ph.D 2013). [1] [2] His doctoral research focused on the biochemistry of physiological stress response. The well-known Canadian biochemist Kenneth B. Storey was his thesis advisor during his graduate studies at Carleton University. After completing a post-doctoral fellowship at the University of Western Ontario Schulich School of Medicine and Dentistry, Biggar came back to his alma mater to become an assistant professor of Biochemistry as of 2016. [3]

Research

Biggar's research includes many different areas from different fields within molecular biology, biochemistry, and physical biochemistry. His main areas of research interest are Oxidative Cell Stress, [4] Functional Proteomics, [5] Bioinformatics, [6] and Molecular Pharmacology. [7] He is particularly known for his research in the new field of Non-histone Lysine Methylation and its relation to both functional proteomics and cell stress.

Professional honours

Biggar was the 2016 recipient of the John Charles Polanyi Prize for outstanding work in early career research in peptide therapeutics. [8]

Selected recent publications

Related Research Articles

<span class="mw-page-title-main">Histone</span> Protein family around which DNA winds to form nucleosomes

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Protein biosynthesis</span> Assembly of proteins inside biological cells

Protein biosynthesis is a core biological process, occurring inside cells, balancing the loss of cellular proteins through the production of new proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences.

<span class="mw-page-title-main">Epigenetics</span> Study of DNA modifications that do not change its sequence

In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic mechanism of inheritance. Epigenetics usually involves a change that is not erased by cell division, and affects the regulation of gene expression. Such effects on cellular and physiological phenotypic traits may result from environmental factors, or be part of normal development. Epigenetic factors can also lead to cancer.

Methylation, in the chemical sciences, is the addition of a methyl group on a substrate, or the substitution of an atom by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These terms are commonly used in chemistry, biochemistry, soil science, and biology.

<span class="mw-page-title-main">Max Planck Institute of Biochemistry</span> Research institute in Martinsried, Germany

The Max Planck Institute of Biochemistry is a research institute of the Max Planck Society located in Martinsried, a suburb of Munich. The institute was founded in 1973 by the merger of three formerly independent institutes: the Max Planck Institute of Biochemistry, the Max Planck Institute of Protein and Leather Research, and the Max Planck Institute of Cell Chemistry.

<span class="mw-page-title-main">Histone H4</span> One of the five main histone proteins involved in the structure of chromatin

Histone H4 is one of the five main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H4 is involved with the structure of the nucleosome of the 'beads on a string' organization. Histone proteins are highly post-translationally modified. Covalently bonded modifications include acetylation and methylation of the N-terminal tails. These modifications may alter expression of genes located on DNA associated with its parent histone octamer. Histone H4 is an important protein in the structure and function of chromatin, where its sequence variants and variable modification states are thought to play a role in the dynamic and long term regulation of genes.

Histone H2B is one of the 5 main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and long N-terminal and C-terminal tails, H2B is involved with the structure of the nucleosomes.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

<span class="mw-page-title-main">Charles David Allis</span> American molecular biologist (1951–2023)

Charles David Allis was an American molecular biologist, and the Joy and Jack Fishman Professor at the Rockefeller University. He was also the Head of the Laboratory of Chromatin Biology and Epigenetics, and a professor at the Tri-Institutional MD–PhD Program.

<span class="mw-page-title-main">Histone-modifying enzymes</span> Type of enzymes

Histone-modifying enzymes are enzymes involved in the modification of histone substrates after protein translation and affect cellular processes including gene expression. To safely store the eukaryotic genome, DNA is wrapped around four core histone proteins, which then join to form nucleosomes. These nucleosomes further fold together into highly condensed chromatin, which renders the organism's genetic material far less accessible to the factors required for gene transcription, DNA replication, recombination and repair. Subsequently, eukaryotic organisms have developed intricate mechanisms to overcome this repressive barrier imposed by the chromatin through histone modification, a type of post-translational modification which typically involves covalently attaching certain groups to histone residues. Once added to the histone, these groups elicit either a loose and open histone conformation, euchromatin, or a tight and closed histone conformation, heterochromatin. Euchromatin marks active transcription and gene expression, as the light packing of histones in this way allows entry for proteins involved in the transcription process. As such, the tightly packed heterochromatin marks the absence of current gene expression.

<span class="mw-page-title-main">UNSW Faculty of Science</span> Part of the University of New South Wales in Australia

The Faculty of Science is a constituent body of the University of New South Wales (UNSW), Australia. It is UNSW's second largest Faculty. It has over 400 academic staff and over 700 research staff and students.

<span class="mw-page-title-main">Tudor domain</span>

In molecular biology, a Tudor domain is a conserved protein structural domain originally identified in the Tudor protein encoded in Drosophila. The Tudor gene was found in a Drosophila screen for maternal factors that regulate embryonic development or fertility. Mutations here are lethal for offspring, inspiring the name Tudor, as a reference to the Tudor King Henry VIII and the several miscarriages experienced by his wives.

<span class="mw-page-title-main">Kenneth B. Storey</span> Canadian scientist (born 1949)

Kenneth B. Storey is a Canadian scientist whose work draws from a variety of fields including biochemistry and molecular biology. He is a Professor of Biology, Biochemistry and Chemistry at Carleton University in Ottawa, Canada. Storey has a world-wide reputation for his research on biochemical adaptation - the molecular mechanisms that allow animals to adapt to and endure severe environmental stresses such as deep cold, oxygen deprivation, and desiccation.

<span class="mw-page-title-main">EHMT1</span> Protein-coding gene in the species Homo sapiens

Euchromatic histone-lysine N-methyltransferase 1, also known as G9a-like protein (GLP), is a protein that in humans is encoded by the EHMT1 gene.

Protein methylation is a type of post-translational modification featuring the addition of methyl groups to proteins. It can occur on the nitrogen-containing side-chains of arginine and lysine, but also at the amino- and carboxy-termini of a number of different proteins. In biology, methyltransferases catalyze the methylation process, activated primarily by S-adenosylmethionine. Protein methylation has been most studied in histones, where the transfer of methyl groups from S-adenosyl methionine is catalyzed by histone methyltransferases. Histones that are methylated on certain residues can act epigenetically to repress or activate gene expression.

Epigenetics of human development is the study of how epigenetics effects human development.

<span class="mw-page-title-main">Thomas Jenuwein</span> German scientist

Thomas Jenuwein is a German scientist working in the fields of epigenetics, chromatin biology, gene regulation and genome function.

Kevin Struhl is an American molecular biologist and the David Wesley Gaiser Professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School. Struhl is primarily known for his work on transcriptional and post transcriptional regulatory mechanisms in yeast using molecular, genetic, biochemical, and genomic approaches. In addition, he has used related approaches to study transcriptional regulatory circuits involved in cellular transformation and the formation of cancer stem cells.

Brian David Strahl is an American biochemist and molecular biologist. He is currently a professor in the Department of Biochemistry & Biophysics at the University of North Carolina at Chapel Hill. Strahl is known for his research in the field of chromatin biology and histone modifications. Strahl, with C. David Allis proposed the “histone code hypothesis”.

References

  1. 1 2 "Kyle Biggar Wins Polanyi Research Prize for Fighting Cancer". Carleton University. Retrieved 15 March 2018.
  2. "Kyle Biggar - Department of Biology". carleton.ca. Retrieved 2018-03-19.
  3. "Kyle K Biggar | Ph.D | Carleton University, Ottawa | Institute of Biochemistry | ResearchGate". ResearchGate. Retrieved 2018-03-19.
  4. "Environmental stress". biggarlab.dudaone.com. Retrieved 2018-03-19.
  5. "Functional proteomics". biggarlab.dudaone.com. Retrieved 2018-03-19.
  6. "Bioinformatics". biggarlab.dudaone.com. Retrieved 2018-03-19.
  7. "Molecular Pharmacology". biggarlab.dudaone.com. Retrieved 2018-03-19.
  8. "2016 John Charles Polanyi Prize Winners | Council of Ontario Universities". Council of Ontario Universities. Retrieved 2018-03-20.
  9. "Publications". biggarlab.dudaone.com. Retrieved 2018-03-19.