Laplace (disambiguation)

Last updated

Pierre-Simon Laplace was a French mathematician and astronomer.

Contents

Laplace, LaPlace or La Place may also refer to:

Places

Fictional locations

People

People with the surname

Transportation, transport stations, vehicles

Spaceflight

Other uses

See also

Related Research Articles

Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality.

In mathematics, the Laplace transform, named after Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

Normal(s) or The Normal(s) may refer to:

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

<span class="mw-page-title-main">Pierre-Simon Laplace</span> French polymath (1749–1827)

Pierre-Simon, Marquis de Laplace was a French scholar whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized and extended the work of his predecessors in his five-volume Mécanique céleste (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace.

<span class="mw-page-title-main">George William Hill</span> American mathematical astronomer (1838–1914)

George William Hill was an American astronomer and mathematician. Working independently and largely in isolation from the wider scientific community, he made major contributions to celestial mechanics and to the theory of ordinary differential equations. The importance of his work was explicitly acknowledged by Henri Poincaré in 1905. In 1909 Hill was awarded the Royal Society's Copley Medal, "on the ground of his researches in mathematical astronomy". Hill is remembered for the Hill differential equation, along with the Hill sphere.

In mathematics, an integral transform is a type of transform that maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform.

In mathematics, Bäcklund transforms or Bäcklund transformations relate partial differential equations and their solutions. They are an important tool in soliton theory and integrable systems. A Bäcklund transform is typically a system of first order partial differential equations relating two functions, and often depending on an additional parameter. It implies that the two functions separately satisfy partial differential equations, and each of the two functions is then said to be a Bäcklund transformation of the other.

<span class="mw-page-title-main">Terence Tao</span> Australian-American mathematician (born 1975)

Terence Chi-Shen Tao is an Australian and American mathematician who is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins Chair in the College of Letters and Sciences. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory.

<span class="mw-page-title-main">Pierre-Louis Lions</span> French mathematician (born 1956)

Pierre-Louis Lions is a French mathematician. He is known for a number of contributions to the fields of partial differential equations and the calculus of variations. He was a recipient of the 1994 Fields Medal and the 1991 Prize of the Philip Morris tobacco and cigarette company.

<span class="mw-page-title-main">Paul Malliavin</span> French mathematician

Paul Malliavin was a French mathematician who made important contributions to harmonic analysis and stochastic analysis. He is known for the Malliavin calculus, an infinite dimensional calculus for functionals on the Wiener space and his probabilistic proof of Hörmander's theorem. He was Professor at the Pierre and Marie Curie University and a member of the French Academy of Sciences from 1979 to 2010.

Hadamard may refer to:

<span class="mw-page-title-main">Zofia Szmydt</span> Polish mathematician

Zofia Szmydt was a Polish mathematician working in the areas of differential equations, potential theory and the theory of distributions. She was a winner of the Stefan Banach Prize for mathematics in 1956.

<span class="mw-page-title-main">Richard Bruce Paris</span> British mathematician

Richard Bruce Paris was a British mathematician and reader at the Abertay University in Dundee, who specialized in calculus. He also had an honorary readership of the University of St. Andrews, Scotland. The research activity of Paris particularly concerned the asymptotics of integrals and properties of special functions. He is the author of Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descent as well as the co-author of Asymptotics and Mellin-Barnes Integrals and of Asymptotics of High Order Differential Equations. In addition, he contributed to the NIST Handbook of Mathematical Functions and also released numerous papers for Proceedings of the Royal Society A, Methods and Applications of Analysis and the Journal of Computational and Applied Mathematics.