Las Cumbres Observatory

Last updated
Las Cumbres Observatory
FoundedSeptember 2005
Founder Wayne Rosing
TypeNot-for-profit organization, 501(c)(3)
Location
Coordinates 34°25′58″N119°51′47″W / 34.4327°N 119.8630°W / 34.4327; -119.8630
Key people
Lars Bildsten (BoD), Lisa Storrie-Lombardi (President & Observatory Director), Dorothy Largay (BoD), Wayne Rosing (BoD), Michael Skrutskie (BoD)
Website www.lco.global

Las Cumbres Observatory (LCO) is a network of astronomical observatories run by a non-profit private operating foundation directed by the technologist Wayne Rosing. Its offices are in Goleta, California. The telescopes are located at both northern and southern hemisphere sites distributed in longitude around the Earth. For some astronomical objects, the longitudinal spacing of telescopes allows continuous observations over 24 hours or longer. The operating network currently consists of two 2 meter telescopes, nine 1 meter telescopes, and seven 40 cm telescopes, placed at six astronomical observatories. The network operates as a single, integrated, observing facility, using a software scheduler that continuously optimizes the planned observing schedule of each individual telescope.

Contents

History

Rosing incorporated Las Cumbres Observatory in 1993 with the goal of aiding universities, observatories, and individuals in the acquisition and improvement of telescopes, optics, and instrumentation. He also set the objective for the organization to build and implement a global telescope system. In 2005, Rosing established the global telescope version of Las Cumbres Observatory.

LCO initially acquired the two Faulkes 2 meter telescopes. Faulkes Telescope North (FTN) located at Haleakala Observatory, on Maui, Hawaii, and Faulkes Telescope South (FTS) at Siding Spring Observatory (SSO), in eastern Australia. LCO also purchased the company that built the Faulkes telescopes, Telescope Technologies Limited of Liverpool, with the intent of installing additional 2-meter telescopes at different sites to form a robotically operated network. Over the next few years, Rosing and the LCO staff came to understand that a network composed of many smaller telescopes would provide greater observing capacity. The organization designed its own 1 meter telescope with a plan to locate several of these at each chosen site. An even smaller 40 cm telescope was also developed primarily for use in education projects.

During 2012 and 2013, nine 1 meter telescopes were constructed and deployed to McDonald Observatory at Fort Davis, Texas; Cerro Tololo Interamerican Observatory (CTIO) in Chile; South African Astronomical Observatory (SAAO), near Sutherland, South Africa; and SSO in Australia. During 2015 and 2016, seven 40 cm telescopes were deployed to CTIO, Haleakala Observatory, SSO, and to Teide Observatory on Tenerife in the Canary Islands.

After completion of the construction and installation of these telescopes, LCO began its transition to operating a global observatory. In 2013, a Board of Directors was established and a President was hired to lead the organization. Full science scheduling began on 1 May 2014, with the two 2 meter and nine 1 meter telescopes operating as a single, integrated, observatory. The 40 cm telescopes were added to this system as they were commissioned.

The National Science Foundation made an award to LCO in 2016 through its Mid-Scale Innovations Program, purchasing access to the LCO network for all astronomers at U.S. institutions. The goal of this program is to prepare this community to carry out effective research following discoveries being made by current and future time domain astronomy surveys.

Telescope network

Sites

LCO operates its network at seven sites. The operating sites are all professional astronomical observatories.

In the southern hemisphere:

LCOGT commissioning at McDonald Observatory McDonald node, TX.jpg
LCOGT commissioning at McDonald Observatory
LCOGT 80 cm telescope enclosure at Sedgwick Reserve LCOGT Sedgwick Reserve Night.JPG
LCOGT 80 cm telescope enclosure at Sedgwick Reserve

In the northern hemisphere:

The Ngari Observatory in Ngari Prefecture, western Tibet, China was added as a node to the network. [1]

LCO also operates an identical 1 meter telescope at its headquarters in Goleta for engineering development and a 0.8 meter telescope at Sedgwick Reserve near Santa Ynez, California.

Telescopes

LCO 2 m Faulkes Telescope North LCOGT 2m.JPG
LCO 2 m Faulkes Telescope North
LCO 1 m Telescope prototype at Santa Barbara LCOGT 1m.jpg
LCO 1 m Telescope prototype at Santa Barbara
LCO 40 cm Telescope prototype at Santa Barbara LCOGT 40cm.jpg
LCO 40 cm Telescope prototype at Santa Barbara

The 2 meter telescopes are the two Faulkes telescopes built by Telescope Technologies Ltd. They are f/10 Ritchey-Chrétien optical configurations on alt-az mounts.

The 1 meter telescopes are f/7.95 Ritchey-Chrétien optical systems on equatorial mounts. They have a 50 arcminute-diameter fully corrected field of view.

The 40 centimetres (16 in) telescopes use the optics and tubes from Meade 16 inch RCX telescopes. The mount has been replaced by a scaled-down version of the LCO 1 meter telescope mount.

Instruments

The 2 meter telescopes are instrumented with optical imagers and low-resolution optical spectrographs (FLOYDS). [2]

The 1 meter telescopes are instrumented with “Sinistro” optical imagers that have a 26 arcminute square field of view. During 2017, a set of high-resolution (R = 50,000), high-stability spectrographs (NRES) were deployed to four of the LCO sites to be coupled by optical fibres to the 1 meter telescopes. [3]

The 40 centimetres (16 in) telescopes are equipped with SBIG STX-6303 optical imagers.

Operation

The global telescope network operates as a single observatory. Users request observations only for a generic class of telescope/instrument and the software scheduler determines an optimum observing schedule for each telescope. The scheduler revises the observing schedules for all telescopes as necessary and updates can be provided within 15 minutes. The rapid-response request mode bypasses the scheduler and can begin an observation within a few minutes after submission. Each telescope carries out a nightly calibration program and adjusts its pointing and focus several times per night. [4] [5] [6]

The telescopes are all instrumented uniformly to facilitate the combining of data from multiple telescopes or sites. Data are returned to LCO headquarters, where they are processed to remove instrumental signature and ingested into an archive. Users have immediate access to their observations and all data are made public after 12 months.

Usage

The network is available to researchers at institutions that are members of the LCO science collaboration. Institutions that operate the sites hosting the LCO telescopes and a few institutions that have contributed resources to help build the network are members of the collaboration. The entire U.S. astronomical community gained access to the LCO network in 2016 as a result of an award from the National Science Foundation's Mid-Scale Innovation Program. The program is administered through a peer-review proposal process run by the National Optical Astronomy Observatory. Several science teams and individuals also purchase time on the LCO network.

Research

The design and operation of the LCO global telescope network provide the unique capabilities required for time domain astronomy. The LCO network offers the ability to observe objects or events continuously and the ability to obtain data rapidly upon the discovery or announcement of an event.

The LCO network has been used to study supernovae and other explosive transients; exoplanets, through observations of both transits and microlensing; asteroids; and AGN variability. In 2017 LCO played a critical part in two major discoveries: first visible counterpart of a gravitational wave event, [7] [8] and a new type of supernova with successive explosions. [9] [10]

Education

Since the beginning of LCO, education has been one of its core missions. In 2017, for the first time in LCO's history it issued an open call for education partners, Global Sky Partners [11] —groups who could use their robotic telescopes to inspire diverse audiences with educational and outreach projects that they support. In 2019 there are 20 LCO Global Sky Partners [12] based in the US, Europe, Sub-Saharan Africa, the Middle East, Australia, or running entirely online programs, for students, teachers, and the wider public. In 2019 the reported direct impact of the program was 13,000 individuals exclusively using the LCO 0.4-meter network, [13] predominantly school children and teachers.

The LCO education team also maintains in-house educational programs to trigger observations and make use of data from the LCO network. [14] These programs are designed to inspire anyone with an interest in astronomy to explore science using robotic telescopes. Recent successful programs include Asteroid Tracker, [15] Agent Exoplanet, [16] and Serol's Cosmic Explorers. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Palomar Observatory</span> Astronomical observatory in Southern California

Palomar Observatory is an astronomical research observatory in the Palomar Mountains of San Diego County, California, United States. It is owned and operated by the California Institute of Technology (Caltech). Research time at the observatory is granted to Caltech and its research partners, which include the Jet Propulsion Laboratory (JPL), Yale University, and the National Astronomical Observatories of China.

The National Solar Observatory (NSO) is a United States federally funded research and development center to advance the knowledge of the physics of the Sun. NSO studies the Sun both as an astronomical object and as the dominant external influence on Earth. NSO is headquartered in Boulder and operates facilities at a number of locations – at the 4-meter Daniel K. Inouye Solar Telescope in the Haleakala Observatory on the island of Maui, at Sacramento Peak near Sunspot in New Mexico, and six sites around the world for the Global Oscillations Network Group one of which is shared with the Synoptic Optical Long-term Investigations of the Sun.

<span class="mw-page-title-main">McDonald Observatory</span> Observatory

McDonald Observatory is an astronomical observatory located near unincorporated community of Fort Davis in Jeff Davis County, Texas, United States. The facility is located on Mount Locke in the Davis Mountains of West Texas, with additional facilities on Mount Fowlkes, approximately 1.3 kilometers (0.81 mi) to the northeast. The observatory is part of The University of Texas at Austin. It is an organized research unit of the College of Natural Sciences.

<span class="mw-page-title-main">WIYN Observatory</span> Observatory in Pima County, Arizona

The WIYN Observatory is owned and operated by the WIYN Consortium. Its 3.5-meter telescope is the second largest optical telescope at Kitt Peak National Observatory in Arizona. Most of the capital costs for the observatory were provided by the University of Wisconsin–Madison, Indiana University, and Yale University, while the National Optical Astronomy Observatory (NOAO) provides most of the operating services. The NOAO is an institution of the United States; it is the national optical observatory program and supports a collection of ground-based telescopes at Kitt Peak as well as other locations.

<span class="mw-page-title-main">National Optical Astronomy Observatory</span> United States national observatory

The National Optical Astronomy Observatory (NOAO) was the United States national observatory for ground-based nighttime ultraviolet-optical-infrared (OUVIR) astronomy. The National Science Foundation (NSF) funded NOAO to provide forefront astronomical research facilities for US astronomers. Professional astronomers from any country in the world could apply to use the telescopes operated by NOAO under the NSF's "open skies" policy.

<span class="mw-page-title-main">Cerro Tololo Inter-American Observatory</span> Observatory in Chile

The Cerro Tololo Inter-American Observatory (CTIO) is an astronomical observatory located on the summit of Mt. Cerro Tololo in the Coquimbo Region of northern Chile, with additional facilities located on Mt. Cerro Pachón about 10 kilometres (6.2 mi) to the southeast. It is approximately 80 kilometres (50 mi) east of La Serena, where support facilities are located. The principal telescopes at CTIO are the 4 m Víctor M. Blanco Telescope, named after Puerto Rican astronomer Víctor Manuel Blanco, and the 4.1 m Southern Astrophysical Research Telescope, which is situated on Cerro Pachón. Other telescopes on Cerro Tololo include the 1.5 m, 1.3 m, 1.0 m, and 0.9 m telescopes operated by the SMARTS consortium. CTIO also hosts other research projects, such as PROMPT, WHAM, and LCOGTN, providing a platform for access to the southern hemisphere for U.S. and worldwide scientific research.

<span class="mw-page-title-main">Swedish Solar Telescope</span> Telescope on La Plama, Canary Islands

The Swedish 1-m Solar Telescope is a refracting solar telescope at Roque de los Muchachos Observatory, La Palma in the Canary Islands. It is run by the Institute for Solar Physics of Stockholm University. The primary element is a single fused silica lens, making it the largest optical refracting telescope in use in the world. The Swedish 1-m Solar Telescope, with a lens diameter of 43 inches, is technically larger than Yerkes Observatory, only 39 inches are clear for the aperture. The SST is most often used as a Schupmann telescope, thereby correcting the chromatic aberrations of the singlet primary.

<span class="mw-page-title-main">Robotic telescope</span>

A robotic telescope is an astronomical telescope and detector system that makes observations without the intervention of a human. In astronomical disciplines, a telescope qualifies as robotic if it makes those observations without being operated by a human, even if a human has to initiate the observations at the beginning of the night or end them in the morning. It may have software agents using artificial intelligence that assist in various ways such as automatic scheduling. A robotic telescope is distinct from a remote telescope, though an instrument can be both robotic and remote.

<span class="mw-page-title-main">Siding Spring Observatory</span> Astronomic observatory in New South Wales, Australia

Siding Spring Observatory near Coonabarabran, New South Wales, Australia, part of the Research School of Astronomy & Astrophysics (RSAA) at the Australian National University (ANU), incorporates the Anglo-Australian Telescope along with a collection of other telescopes owned by the Australian National University, the University of New South Wales, and other institutions. The observatory is situated 1,165 metres (3,822 ft) above sea level in the Warrumbungle National Park on Mount Woorat, also known as Siding Spring Mountain. Siding Spring Observatory is owned by the Australian National University (ANU) and is part of the Mount Stromlo and Siding Spring Observatories research school.

<span class="mw-page-title-main">Giant Magellan Telescope</span> Telescope under construction in Chile

The Giant Magellan Telescope is a 25.4-meter, ground-based, extremely large telescope under construction at Las Campanas Observatory in Chile's Atacama Desert. Commissioning is anticipated in the early 2030s. Once complete, the Giant Magellan will be the largest Gregorian telescope ever built observing in optical and mid-infrared light. The telescope uses seven of the world’s largest mirrors to form a light collecting area of 368 square meters.

<span class="mw-page-title-main">Haleakalā Observatory</span> Astronomical observatory on Maui Island, Hawaii, USA

The Haleakalā Observatory, also known as the Haleakalā High Altitude Observatory Site, is Hawaii's first astronomical research observatory. It is located on the island of Maui and is owned by the Institute for Astronomy of the University of Hawaiʻi, which operates some of the facilities on the site and leases portions to other organizations. Tenants include the Air Force Research Laboratory (AFRL) and the Las Cumbres Observatory Global Telescope Network (LCOGTN). At over 3,050 meters (10,010 ft) in altitude, the summit of Haleakalā is above one third of the Earths's troposphere and has excellent astronomical seeing conditions.

<span class="mw-page-title-main">Faulkes Telescope South</span>

The Faulkes Telescope South is a clone of the Liverpool Telescope and is located at Siding Spring Observatory in New South Wales, Australia. It is a 2 m (79 in) Ritchey-Chrétien telescope. It was designed to be operated remotely with the aim of encouraging an interest in science by young people. It is supported by an altazimuth mount.

<span class="mw-page-title-main">Southern Astrophysical Research Telescope</span> Observatory in Chile

The Southern Astrophysical Research (SOAR) telescope is a modern 4.1-meter (13 ft) aperture optical and near-infrared telescope located on Cerro Pachón, Chile at 2,738 metres (8,983 ft) elevation. It was commissioned in 2003, and is operated by a consortium including the countries of Brazil and Chile, Michigan State University, the Cerro Tololo Inter-American Observatory (CTIO), and the University of North Carolina at Chapel Hill. Partners have guaranteed shares varying from 10 to 30 percent of the observing time.

<span class="mw-page-title-main">Teide Observatory</span> Astronomical observatory in the Canary Islands, Spain

Teide Observatory, IAU code 954, is an astronomical observatory on Mount Teide at 2,390 metres (7,840 ft), located on Tenerife, Spain. It has been operated by the Instituto de Astrofísica de Canarias since its inauguration in 1964. It became one of the first major international observatories, attracting telescopes from different countries around the world because of the good astronomical seeing conditions. Later, the emphasis for optical telescopes shifted more towards Roque de los Muchachos Observatory on La Palma.

<span class="mw-page-title-main">Calar Alto Observatory</span> Observatory

The Calar Alto Observatory is an astronomical observatory located in Almería province in Spain on Calar Alto, a 2,168-meter-high (7,113 ft) mountain in the Sierra de Los Filabres subrange of the Sierra Nevada.

<span class="mw-page-title-main">Wise Observatory</span> Astronomical observatory in Israel

The Florence and George Wise Observatory is an astronomical observatory owned and operated by Tel Aviv University. It is located 5 kilometers west of the town of Mitzpe Ramon in the Negev desert near the edge of the Ramon Crater, and it is the only professional astronomical observatory in Israel.

<span class="mw-page-title-main">Las Campanas Observatory</span> Observatory

Las Campanas Observatory (LCO) is an astronomical observatory owned and operated by the Carnegie Institution for Science (CIS). It is in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena. The LCO telescopes and other facilities are near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, is the future home of the Giant Magellan Telescope.

The Faulkes Telescope Project (FTP) is supported by the Dill Faulkes Educational Trust. It provides access to 1,500 hours of observing time on two 2-metre class telescopes located in Hawaii and Australia. This time is dedicated to education and public outreach, mainly in the UK, but also for smaller, selected projects in Europe and the US.

RoboNet-1.0 was a prototype global network of UK-built 2-metre robotic telescopes, the largest of their kind in the world, comprising the Liverpool Telescope on La Palma, the Faulkes Telescope North on Maui (Hawaii), and the Faulkes Telescope South in Australia, managed by a consortium of ten UK universities under the lead of Liverpool John Moores University. For the technological aims of integrating a global network to act effectively as a single instrument, and maximizing the scientific return by applying the newest developments in e-Science, RoboNet adopted the intelligent-agent architecture devised and maintained by the eSTAR project.

<span class="mw-page-title-main">Nicholas U. Mayall Telescope</span> Four-meter reflector telescope in Pima County, Arizona

The Nicholas U. Mayall Telescope, also known as the Mayall 4-meter Telescope, is a four-meter reflector telescope located at the Kitt Peak National Observatory in Arizona and named after Nicholas U. Mayall. It saw first light on February 27, 1973, and was the second-largest telescope in the world at that time. Initial observers included David Crawford, Nicholas Mayall, and Arthur Hoag. It was dedicated on June 20, 1973 after Mayall's retirement as director. The mirror has an f/2.7 hyperboloidal shape. It is made from a two-foot thick fused quartz disk that is supported in an advanced-design mirror cell. The prime focus has a field of view six times larger than that of the Hale reflector. It is host to the Dark Energy Spectroscopic Instrument. The identical Víctor M. Blanco Telescope was later built at Cerro Tololo Inter-American Observatory, in Chile.

References

  1. A decade of stargazing on roof of world
  2. Sand, David (2014). "The Robotic FLOYDS Spectrographs". Htu-III. Ground-based and Airborne Instrumentation for Astronomy VI: 187. Bibcode:2014htu..conf..187S.
  3. Siverd, Robert; et al. (2014). Evans, Christopher J; Simard, Luc; Takami, Hideki (eds.). "NRES: The Network of Robotic Echelle Spectrographs" (PDF). Proc. SPIE. Ground-based and Airborne Instrumentation for Astronomy VI. 9908: 99086X. Bibcode:2016SPIE.9908E..6XS. doi:10.1117/12.2233188. S2CID   173182661.
  4. Pickles, Andrew; et al. (2010). Stepp, Larry M; Gilmozzi, Roberto; Hall, Helen J (eds.). "LCO Telescope Network Capabilities". Proc. SPIE. Ground-based and Airborne Telescopes III. 7733: 77332X. Bibcode:2010SPIE.7733E..2XP. doi:10.1117/12.857923. S2CID   120899811.
  5. Boroson, Todd; et al. (2014). Peck, Alison B; Benn, Chris R; Seaman, Robert L (eds.). "Science Operations for LCOGT – a Global Telescope Network". Proc. SPIE. Observatory Operations: Strategies, Processes, and Systems V. 9149: 91491E. Bibcode:2014SPIE.9149E..1EB. doi:10.1117/12.2054776. S2CID   120996533.
  6. Volgenau, Nikolaus; Boroson, Todd (2016). Peck, Alison B; Seaman, Robert L; Benn, Chris R (eds.). "Two years of LCOGT operations: the challenges of a global observatory". Proc. SPIE. Observatory Operations: Strategies, Processes, and Systems VI. 9910: 99101C. Bibcode:2016SPIE.9910E..1CV. doi:10.1117/12.2233830. S2CID   123218154.
  7. Seale, Sandy (16 October 2017). "Astronomers Use Global Telescope Network to Catch a Fleeting Kilonova for the First Time" (Press release). Las Cumbres Observatory. Retrieved 3 August 2018.
  8. Arcavi, Iair; et al. (2017). "Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger". Nature. 551 (7678): 64–66. arXiv: 1710.05843 . Bibcode:2017Natur.551...64A. doi:10.1038/nature24291. S2CID   205261241.
  9. Seale, Sandy (November 8, 2017). "Las Cumbres Astronomers Discover a Star That Would Not Die" (Press release). Las Cumbres Observatory. Retrieved 3 August 2018.
  10. Arcavi, Iair; et al. (2017). "Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star". Nature. 551 (7679): 210–213. arXiv: 1711.02671 . Bibcode:2017Natur.551..210A. doi:10.1038/nature24030. PMID   29120417. S2CID   205260551.
  11. Gomez, Edward (10 October 2017). "Las Cumbres Observatory Launches Global Education Program".
  12. "Global Sky Partners".
  13. "GSP-brochure-2019.PDF".
  14. Hayden, Tyler (1 September 2016). "Las Cumbres Observatory Connects Us to the Cosmos". Santa Barbara Independent.
  15. "Asteroid Tracker powered by LCO". www.asteroidtracker.lco.global. Retrieved 13 June 2024.
  16. "Agent Exoplanet | Las Cumbres Observatory". agentexoplanet.lco.global. Retrieved 2024-06-13.
  17. "Serol's Cosmic Adventures | powered by Las Cumbres Observatory". serol.lco.global. Retrieved 2024-06-13.