Laser SETI

Last updated
Terrestrial Microwave Window TerrestrialMicrowaveWindow.jpg
Terrestrial Microwave Window

LaserSETI is a network of optical instruments distributed around the world designed to observe "all of the sky, all of the time" in search of laser pulses originating outside of our solar system. LaserSETI could give evidence of intelligent life beyond Earth as it searches for techno-signatures in the form of these laser pulses or high intensity monochromatic light sources. [1] The technology, which consists of straightforward optical and mechanical components, was prototyped and subjected to rigorous preliminary tests before the first light in 2019. While the LaserSETI network of observatories is still in construction as of 2024, strategic placement of the current and future observatories will lend the network its capability for all-sky monitoring once it is complete.

Contents

With consistent all-sky monitoring, even relatively rare events could be found via LaserSETI monitoring. LaserSETI can discover pulses over a wide range of pulse durations, and is especially sensitive to millisecond, non-repeating pulses that may have been overlooked in previous astronomical surveys. [2]

History

The LaserSETI observatory at Robert Ferguson Observatory in California. Credit: Eliot Gillum LaserSETIRFO.jpg
The LaserSETI observatory at Robert Ferguson Observatory in California. Credit: Eliot Gillum

LaserSETI started in 2015 as a program of the SETI Institute, though the official name was not made public until 2016. Founded by Eliot Gillum, the project began with a small team dedicated to the design, construction  and scientific priorities of initial prototypes. In August 2017, the crowdfunding goal of $100k was reached, which the team used to initially deploy one camera to analyze the quality of the observations. [3]

In 2018, the first two cameras were manufactured. This same year, the SETI Institute announced that they were going to be able to deploy 8 cameras instead of four, meaning that they could fully monitor two independent fields-of-view.

In 2019, SETI announced that the final logistics were being worked out for the placement of LaserSETI's first observatory at RFO's (Robert Ferguson Observatory) idyllic facility, in Sonoma County. By August 6th of 2019, the installation at RFO was complete and LaserSETI had its first light. [4]

In August 2021, a second LaserSETI station was installed at the Haleakalā High Altitude Observatory Site in Hawai'i, which is owned and operated by Institute for Astronomy of the University of Hawai’i. This second LaserSETI observatory was operational by Dec 2021. [5]

One of the laserSETI stations in Sedona, AZ. Credit: LaserSETI team. LaserSETISedona.png
One of the laserSETI stations in Sedona, AZ. Credit: LaserSETI team.

In May 2024, the team grew with the contribution of Franck Marchis, Director of Citizen Science at the SETI Institute & Project lead, Lauren Sgro as Outreach Manager, and Tom Esposito as Science Software Manager, with the goal of accelerating the growth of the LaserSETI Network. [6] The group will oversee the manufacturing of additional stations, their installation in the Northern Hemisphere, and the development of the software architecture.

In July of 2024, two new LaserSETI stations were installed in Sedona, Arizona, making for the third LaserSETI observatory. As of October 2024, the instruments still need to be focused on a clear night before they are fully operational. [7]

Nine more observatories are currently under construction and slated for installation outside the United States. Note that cameras are installed in pairs with their diffraction gratings at 90 degrees to each other.

LaserSETI Instruments

A LaserSETI instrument under construction. Credit: Eliot Gilum LaserSETI inprogress.jpg
A LaserSETI instrument under construction. Credit: Eliot Gilum

Each LaserSETI instrument is made up of two wide-field, highly sensitive large format CCD cameras fitted with 24mm SLR lenses, attached to an optical transmission grating, and set within a sturdy 3D printed weather-durable frame with Pyrex windows. Residing at the base of the instrument is a PC to implement data reduction from the high-speed data from the cameras, and a hard drive to store the raw data. Images are read out more than a thousand times a second.

A second computer at the top of the instrument supplies GPS capabilities for precise clocking as well as a gyrometer and accelerometer to measure any vibration in the system to help avoid error, and an internal camera providing monitoring capabilities of the instrument itself. The components are cost effective for this level of “all sky, all the time” technology since most are COTS (commercial-off-the-shelf), with only the transmission grating and stainless steel enclosure being custom made. [8]

Each instrument can monitor approximately 75 degrees of the sky, and each observatory consisting of two instruments with overlapping fields of view has a combined field of view of 120 degrees down to 30 degrees above the horizon. [9]

LaserSETI Network

The instruments operate fully automatically, initiating data acquisition at astronomical sunset and ceasing at astronomical sunrise. Each night's data capture begins with a calibration field of view (FOV) without a grating, followed by a period of acquisition on the sky with a grating, referred to as science frames. The calibration frames serve as astrometric and photometric references. Subsequently, science frames undergo processing—including dark current subtraction, sky field correction, and bad pixel removal—on board the station. The processed frames are then transmitted to the network for storage and further analysis.

Currently, the data are stored on a private server. However, plans are underway to transition to a decentralized platform to enable real-time global data access. The implementation of this development will hinge on the allocation of resources and the engagement of donors during the 2024-2025 period.

Upon the completed installation of 15 instruments across 7 sites—including Hawaii, California, Europe, the Arabian Peninsula, the Caribbean, and the Himalayas—by early 2026, the network will be capable of observing 58% of the sky. Future expansions are projected to extend coverage to the Southern Hemisphere, featuring an updated instrument design and enhanced sensitivity.

LaserSETI Science

A diagram showing how LaserSETI instruments can distinguish between stellar sources and monochromatic sources such as lasers. Credit: Eliot Gilum LaserSETI focalplanediagram.png
A diagram showing how LaserSETI instruments can distinguish between stellar sources and monochromatic sources such as lasers. Credit: Eliot Gilum

The main science goal of the LaserSETI project is to monitor the skies for extrasolar laser pulses. To do so, LaserSETI instruments creates signatures from natural and non-natural sources that are easy to distinguish from each other using slit-less spectroscopy. The different wavelengths of light coming from a star or other body will be spread into a full spectrum by the grating within each LaserSETI unit. In contrast, a monochromatic pulse only consists of one wavelength of light and will not produce a full spectrum and would be easily identifiable by the LaserSETI pipelines. There are no currently known monochromatic laser sources in nature, so any such detection by LaserSETI could indicate extraterrestrial intelligence or a previously unknown astrophysical process.

Meteors that enter Earth’s atmosphere are also detected by LaserSETI. Surveying meteor activity can help scientists to track fireballs, meteroid orbits, and even assist in meteorite recovery on the ground. Due to its final all-sky nature, LaserSETI might even be able to determine the cause of observed events often attributed to meteoroid activity such as “sky flashes,” which are brief flashes of light that appear as if they are blinking stars.

LaserSETI will also be able to detect the re-entry of man-made debris, both planned and unplanned. Such objects can be distinguished from natural objects like meteors based on qualities like their velocity across the sky. The LaserSETI survey will be able to study the brightness and trajectory of man-made debris, like fragments of spacecraft from launches. [10]

Related Research Articles

The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life. Methods include monitoring electromagnetic radiation for signs of transmissions from civilizations on other planets, optical observation, and the search for physical artifacts. Attempts to message extraterrestrial intelligences have also been made.

<span class="mw-page-title-main">Large Binocular Telescope</span> Telescope for optical astronomy

The Large Binocular Telescope (LBT) is an optical telescope for astronomy located on 10,700-foot (3,300 m) Mount Graham, in the Pinaleno Mountains of southeastern Arizona, United States. It is a part of the Mount Graham International Observatory.

<span class="mw-page-title-main">XMM-Newton</span> X-ray space observatory

XMM-Newton, also known as the High Throughput X-ray Spectroscopy Mission and the X-ray Multi-Mirror Mission, is an X-ray space observatory launched by the European Space Agency in December 1999 on an Ariane 5 rocket. It is the second cornerstone mission of ESA's Horizon 2000 programme. Named after physicist and astronomer Sir Isaac Newton, the spacecraft is tasked with investigating interstellar X-ray sources, performing narrow- and broad-range spectroscopy, and performing the first simultaneous imaging of objects in both X-ray and optical wavelengths.

<span class="mw-page-title-main">Monochromator</span> Optical device which allows selection of a narrow band of wavelengths from a wider spectrum

A monochromator is an optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input. The name is from Greek mono- 'single' chroma 'colour' and Latin -ator 'denoting an agent'.

<span class="mw-page-title-main">Michelson interferometer</span> Common configuration for optical interferometry

The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test.

<span class="mw-page-title-main">Near Infrared Camera and Multi-Object Spectrometer</span>

The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a scientific instrument for infrared astronomy, installed on the Hubble Space Telescope (HST), operating from 1997 to 1999, and from 2002 to 2008. Images produced by NICMOS contain data from the near-infrared part of the light spectrum.

<span class="mw-page-title-main">Satellite geodesy</span> Measurement of the Earth using satellites

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

<span class="mw-page-title-main">Haleakalā Observatory</span> Astronomical observatory on Maui Island, Hawaii, USA

The Haleakalā Observatory, also known as the Haleakalā High Altitude Observatory Site, is Hawaii's first astronomical research observatory. It is located on the island of Maui and is owned by the Institute for Astronomy of the University of Hawaiʻi, which operates some of the facilities on the site and leases portions to other organizations. Tenants include the Air Force Research Laboratory (AFRL) and the Las Cumbres Observatory Global Telescope Network (LCOGTN). At over 3,050 meters (10,010 ft) in elevation, the summit of Haleakalā is above one third of the Earth's troposphere and has excellent astronomical seeing conditions.

<span class="mw-page-title-main">Astrograph</span> Type of telescope

An astrograph is a telescope designed for the sole purpose of astrophotography. Astrographs are mostly used in wide-field astronomical surveys of the sky and for detection of objects such as asteroids, meteors, and comets.

<span class="mw-page-title-main">Vera C. Rubin Observatory</span> Astronomical observatory in Chile

The Vera C. Rubin Observatory, formerly known as the Large Synoptic Survey Telescope (LSST), is an astronomical observatory under construction in Chile. Its main task will be carrying out a synoptic astronomical survey, the Legacy Survey of Space and Time. The word "synoptic" is derived from the Greek words σύν and ὄψις, and describes observations that give a broad view of a subject at a particular time. The observatory is located on the El Peñón peak of Cerro Pachón, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes. The LSST Base Facility is located about 100 kilometres away from the observatory by road, in the city of La Serena. The observatory is named for Vera Rubin, an American astronomer who pioneered discoveries about galaxy rotation rates.

Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has to have the right wavelength (color) and the wave must have the right shape. Volume holograms are also called thick holograms or Bragg holograms.

OSIRIS is an integral field spectrograph for the Keck I telescope in Hawaii. As an integral field spectrograph, it can obtain many spectra simultaneously covering a small region of the sky. As such, it combines the capabilities of a traditional spectrograph and a regular imaging camera. The 'OH suppressing' portion of the name refers to the fact that OSIRIS has sufficient spectral resolution that sky glow from OH molecules can be separated and removed from the spectra of the science targets. OSIRIS covers an infrared bandpass from 1 to 2.5 micrometers with a spectral resolution of about 3800. Combined with the Keck laser guide star adaptive optics system, it can obtain diffraction-limited observations on extremely faint targets. OSIRIS was developed by the UCLA Infrared Laboratory under professor James Larkin. OSIRIS achieved first light on February 22, 2005, on the Keck II telescope.

SEVENDIP, which stands for Search for Extraterrestrial Visible Emissions from Nearby Developed Intelligent Populations, was a project developed by the Berkeley SETI Research Center at the University of California, Berkeley that used visible wavelengths to search for extraterrestrial life's intelligent signals from outer space.

Vernier spectroscopy is a type of cavity enhanced laser absorption spectroscopy that is especially sensitive to trace gases. The method uses a frequency comb laser combined with a high finesse optical cavity to produce an absorption spectrum in a highly parallel manner. The method is also capable of detecting trace gases in very low concentration due to the enhancement effect of the optical resonator on the effective optical path length.

<span class="mw-page-title-main">Berkeley SETI Research Center</span>

The Berkeley SETI Research Center (BSRC) conducts experiments searching for optical and electromagnetic transmissions from intelligent extraterrestrial civilizations. The center is based at the University of California, Berkeley.

<span class="mw-page-title-main">NIROSETI</span> Astronomical program to search for artificial signals

The NIROSETI is an astronomical program to search for artificial signals in the optical (visible) and near infrared (NIR) wavebands of the electromagnetic spectrum. It is the first dedicated near-infrared SETI experiment. The instrument was created by a collaboration of scientists from the University of California, San Diego, Berkeley SETI Research Center at the University of California, Berkeley, University of Toronto, and the SETI Institute. It uses the Anna Nickel 1-m telescope at the Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA. The instrument was commissioned on 15 March 2015 and has been operated for more than 150 nights, and is still operational today.

Explorer 36 was a NASA satellite launched as part of the Explorer program, being the second of the two satellites GEOS. Explorer 36 was launched on 11 January 1968 from Vandenberg Air Force Base, with Thor-Delta E1 launch vehicle.

<span class="mw-page-title-main">Cameras for All-Sky Meteor Surveillance</span> Meteor shower observatory

CAMS is a NASA-sponsored international project that tracks and triangulates meteors during night-time video surveillance in order to map and monitor meteor showers. Data processing is housed at the Carl Sagan Center of the SETI Institute in California, USA. Goal of CAMS is to validate the International Astronomical Union's Working List of Meteor Showers, discover new meteor showers, and predict future meteor showers.

<span class="mw-page-title-main">Kryoneri Observatory</span> Astronomical observatory in Greece

The Kryoneri Observatory, also known as the Kryoneri Astronomical Station, is an astronomical obervatory in Corinthia, Greece, operated by the IAASARS research institute of the National Observatory of Athens. It is home of one of the largest telescopes in Greece, a 1.23 metres (48 in) Cassegrain reflector, which was used for the NELIOTA project of ESA and NOA. The observatory is also housing smaller instruments that are conducting research for IAASARS and are participating in international programmes.

References

  1. "LaserSETI". SETI Institute. Retrieved 2024-12-09.
  2. Klesman, Alison (2017-07-14). "Now is your chance to fund a groundbreaking SETI project". Astronomy Magazine. Retrieved 2024-12-09.
  3. Overton, Gail (2017-08-01). "Laser SETI will look for signals that radio and optical telescopes cannot see". Laser Focus World. Retrieved 2024-12-09.
  4. Plain, Christopher (2022-01-18). "SETI to Begin Searching for Alien Lasers". The Debrief. Retrieved 2024-12-09.
  5. "LaserSETI Installs 2nd Observatory at Haleakala Observatory". SETI Institute. Retrieved 2024-12-09.
  6. "Team – LaserSETI". laserseti.net. Retrieved 2024-12-09.
  7. "New LaserSETI Observatory Installed in Sedona, AZ". SETI Institute. Retrieved 2024-12-09.
  8. "LaserSETI – LaserSETI". laserseti.net. Retrieved 2024-12-09.
  9. "Observatories – LaserSETI". laserseti.net. Retrieved 2024-12-09.
  10. "Science – LaserSETI". laserseti.net. Retrieved 2024-12-09.