Slitless spectroscopy

Last updated

Slitless spectroscopy is spectroscopy done without a small slit to allow only light from a small region to be diffracted. It works best in sparsely populated fields, as it spreads each point source out into its spectrum, and crowded fields can be too confused to be useful for some applications. It also faces the problem that for extended sources, nearby emission lines will overlap. This technique is a basic form of snapshot hyperspectral imaging. Slitless spectroscopy is used for astronomical surveys and in fields, such as solar physics, where time evolution is important. Both types of application benefit from higher speed operation of a slitless spectrograph: conventional spectrographs require multiple exposures, scanning the slit across the target, to acquire a complete spectral image, while a slitless spectrograph can capture a complete image plane in one exposure.

The Crossley telescope utilized a slitless spectrograph that was originally employed by Nicholas Mayall. [1]

The Henry Draper Catalogue, published 1924, contains stellar classifications for hundreds of thousands of stars, based on spectra taken with the objective prism method at Harvard College Observatory. The work of classification was led initially by Williamina Fleming and later by Annie Jump Cannon, with contributions from many other female astronomers including Florence Cushman. [2]

Slitless spectrographs encounter an unusual form of specular reflection at the grating, which leads to anisotropic image distortion called Littrow expansion or compression. The distortion occurs because the normal rules of specular reflection don't apply to reflective gratings operated far from the non-dispersive reflection angle.

See also

Related Research Articles

<span class="mw-page-title-main">Spectroscopy</span> Study involving matter and electromagnetic radiation

Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. In simpler terms, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.

<span class="mw-page-title-main">Optical spectrometer</span> Instrument to measure the properties of visible light

An optical spectrometer is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify materials. The variable measured is most often the irradiance of the light but could also, for instance, be the polarization state. The independent variable is usually the wavelength of the light or a unit directly proportional to the photon energy, such as reciprocal centimeters or electron volts, which has a reciprocal relationship to wavelength.

<span class="mw-page-title-main">Large Binocular Telescope</span> Telescope for optical astronomy

The Large Binocular Telescope (LBT) is an optical telescope for astronomy located on 10,700-foot (3,300 m) Mount Graham, in the Pinaleno Mountains of southeastern Arizona, United States. It is a part of the Mount Graham International Observatory.

<span class="mw-page-title-main">W. M. Keck Observatory</span> Astronomical observatory located in Hawaii

The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and when completed in 1993 and 1996 were the largest optical reflecting telescopes in the world. They are currently the 3rd and 4th largest.

<span class="mw-page-title-main">Astronomical spectroscopy</span> Study of astronomy using spectroscopy to measure the spectrum of electromagnetic radiation

Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei.

<span class="mw-page-title-main">X-ray spectroscopy</span> Technique to characterize materials using X-ray radiation

X-ray spectroscopy is a general term for several spectroscopic techniques for characterization of materials by using x-ray radiation.

<span class="mw-page-title-main">Multi-unit spectroscopic explorer</span> Integral field spectrograph installed at the Very Large Telescope

The Multi-Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph installed at the Very Large Telescope (VLT) of the European Southern Observatory (ESO). It operates in the visible wavelength range, and combines a wide field of view with a high spatial resolution and a large simultaneous spectral range. It is specifically designed to take advantage of the improved spatial resolution provided by adaptive optics, offering diffraction-limited performance in specific configurations. MUSE had first light on the VLT’s Unit Telescope 4 (UT4) on 31 January 2014.

<span class="mw-page-title-main">NASA Infrared Telescope Facility</span>

The NASA Infrared Telescope Facility is a 3-meter (9.8 ft) telescope optimized for use in infrared astronomy and located at the Mauna Kea Observatory in Hawaii. It was first built to support the Voyager missions and is now the US national facility for infrared astronomy, providing continued support to planetary, solar neighborhood, and deep space applications. The IRTF is operated by the University of Hawaii under a cooperative agreement with NASA. According to the IRTF's time allocation rules, at least 50% of the observing time is devoted to planetary science.

A grism is a combination of a prism and grating arranged so that light at a chosen central wavelength passes straight through. The advantage of this arrangement is that one and the same camera can be used both for imaging and spectroscopy without having to be moved. Grisms are inserted into a camera beam that is already collimated. They then create a dispersed spectrum centered on the object's location in the camera's field of view.

<span class="mw-page-title-main">Cosmic Origins Spectrograph</span>

The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado.

<span class="mw-page-title-main">Extreme Ultraviolet Explorer</span> NASA satellite of the Explorer program

The Extreme Ultraviolet Explorer was a NASA space telescope for ultraviolet astronomy. EUVE was a part of NASA's Explorer spacecraft series. Launched on 7 June 1992. With instruments for ultraviolet (UV) radiation between wavelengths of 7 and 76 nm, the EUVE was the first satellite mission especially for the short-wave ultraviolet range. The satellite compiled an all-sky survey of 801 astronomical targets before being decommissioned on 31 January 2001.

<span class="mw-page-title-main">Spektr-UV</span>

The Spektr-UV, also known as World Space Observatory-Ultraviolet (WSO-UV), is a proposed ultraviolet space telescope intended for work in the 115 nm to 315 nm wavelength range. It is an international project led by Russia (Roscosmos), with participation from Spain and Japan. The launch had initially been planned for 2007, but has since been continually delayed; as of February 2023, the launch is planned for the end of 2028 atop an Angara A5M rocket from Vostochny Cosmodrome.

<span class="mw-page-title-main">Integral field spectrograph</span> Spectrograph equipped with an integral field unit

Integral field spectrographs (IFS) combine spectrographic and imaging capabilities in the optical or infrared wavelength domains (0.32 μm – 24 μm) to get from a single exposure spatially resolved spectra in a bi-dimensional region. The name originates from the fact that the mesurements result from integrating the light on multiple sub-regions of the field. Developed at first for the study of astronomical objects, this technique is now also used in many other fields, such bio-medical science and Earth remote sensing. Integral field spectrography is part of the broader category of snapshot hyperspectral imaging techniques, itself a part of hyperspectral imaging.

<span class="mw-page-title-main">Snapshot hyperspectral imaging</span> Method for capturing hyperspectral images

Snapshot hyperspectral imaging is a method for capturing hyperspectral images during a single integration time of a detector array. No scanning is involved with this method, in contrast to push broom and whisk broom scanning techniques. The lack of moving parts means that motion artifacts should be avoided. This instrument typically features detector arrays with a high number of pixels.

<span class="mw-page-title-main">Long-slit spectroscopy</span> Method in astronomy

In astronomy, long-slit spectroscopy involves observing a celestial object using a spectrograph in which the entrance aperture is an elongated, narrow slit. Light entering the slit is then refracted using a prism, diffraction grating, or grism. The dispersed light is typically recorded on a charge-coupled device detector.

<span class="mw-page-title-main">NIRSpec</span> Spectrograph on the James Webb Space Telescope

The NIRSpec is one of the four scientific instruments flown on the James Webb Space Telescope (JWST). The JWST is the follow-on mission to the Hubble Space Telescope (HST) and is developed to receive more information about the origins of the universe by observing infrared light from the first stars and galaxies. In comparison to HST, its instruments will allow looking further back in time and will study the so-called Dark Ages during which the universe was opaque, about 150 to 800 million years after the Big Bang.

The Venus Spectral Rocket Experiment (VeSpR) was a suborbital rocket telescope that collected data on the ultraviolet (UV) light that is being emitted from Venus's atmosphere, which can provide information about the history of water on Venus. Measurements of this type cannot be done using Earth-based telescopes because Earth's atmosphere absorbs most UV light before it reaches the ground.

<span class="mw-page-title-main">Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph</span> Canadian aligner and spectrometer on JWST

Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph (FGS-NIRISS) is an instrument on the James Webb Space Telescope (JWST) that combines a Fine Guidance Sensor and a science instrument, a near-infrared imager and a spectrograph. The FGS/NIRISS was designed by the Canadian Space Agency (CSA) and built by Honeywell as part of an international project to build a large infrared space telescope with the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). FGS-NIRISS observes light from the wavelengths of 0.8 to 5.0 microns. The instrument has four different observing modes.

<span class="mw-page-title-main">Mid-Infrared Instrument</span> Camera and spectrometer on the James Webb Space Telescope

MIRI, or the Mid-Infrared Instrument, is an instrument on the James Webb Space Telescope. MIRI is a camera and a spectrograph that observes mid to long infrared radiation from 5 to 28 microns. It also has coronagraphs, especially for observing exoplanets. Whereas most of the other instruments on Webb can see from the start of near infrared, or even as short as orange visible light, MIRI can see longer wavelength light.

Littrow expansion and its counterpart Littrow compression are optical effects associated with slitless imaging spectrographs. These effects are named after austrian physicist Otto von Littrow.

References

  1. Wilson, Ray N. (2004). Reflecting Telescope Optics, Volume 1: Basic design theory and its historical development. Astronomy and astrophysics library. Vol. 1. Springer. p. 432. ISBN   978-3-540-40106-3.
  2. Spradley, Joseph L. (September 1990). "Women and the stars". The Physics Teacher. 28 (6): 373–375. doi:10.1119/1.2343078.