Lawvere theory

Last updated

In category theory, a Lawvere theory (named after American mathematician William Lawvere) is a category that can be considered a categorical counterpart of the notion of an equational theory.

Contents

Definition

Let be a skeleton of the category FinSet of finite sets and functions. Formally, a Lawvere theory consists of a small category L with (strictly associative) finite products and a strict identity-on-objects functor preserving finite products.

A model of a Lawvere theory in a category C with finite products is a finite-product preserving functor M : LC. A morphism of modelsh : MN where M and N are models of L is a natural transformation of functors.

Category of Lawvere theories

A map between Lawvere theories (L, I) and (L′, I′) is a finite-product preserving functor that commutes with I and I′. Such a map is commonly seen as an interpretation of (L, I) in (L′, I′).

Lawvere theories together with maps between them form the category Law.

Variations

Variations include multisorted (or multityped) Lawvere theory, infinitary Lawvere theory, and finite-product theory. [1]

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Category theory</span> General theory of mathematical structures

Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In mathematics, the inverse limit is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.

In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products within a given category.

In mathematics, a monoidal category is a category equipped with a bifunctor

The following outline is provided as an overview of and guide to category theory, the area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows, where these collections satisfy certain basic conditions. Many significant areas of mathematics can be formalised as categories, and the use of category theory allows many intricate and subtle mathematical results in these fields to be stated, and proved, in a much simpler way than without the use of categories.

In category theory, a branch of mathematics, a monad is a triple consisting of a functor T from a category to itself and two natural transformations that satisfy the conditions like associativity. For example, if are functors adjoint to each other, then together with determined by the adjoint relation is a monad.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In mathematics, the simplex category is the category of non-empty finite ordinals and order-preserving maps. It is used to define simplicial and cosimplicial objects.

This is a glossary of properties and concepts in category theory in mathematics.

In category theory, a strict 2-category is a category with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat.

In mathematics, a free Boolean algebra is a Boolean algebra with a distinguished set of elements, called generators, such that:

  1. Each element of the Boolean algebra can be expressed as a finite combination of generators, using the Boolean operations, and
  2. The generators are as independent as possible, in the sense that there are no relationships among them that do not hold in every Boolean algebra no matter which elements are chosen.

The theory of accessible categories is a part of mathematics, specifically of category theory. It attempts to describe categories in terms of the "size" of the operations needed to generate their objects.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

Isbell conjugacy is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986. That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding. In addition, Lawvere is states as follows; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".

Informally in mathematical logic, an algebraic theory is a theory that uses axioms stated entirely in terms of equations between terms with free variables. Inequalities and quantifiers are specifically disallowed. Sentential logic is the subset of first-order logic involving only algebraic sentences.

In mathematics, especially in category theory, the codensity monad is a fundamental construction associating a monad to a wide class of functors.

In mathematics, the category of Markov kernels, often denoted Stoch, is the category whose objects are measurable spaces and whose morphisms are Markov kernels. It is analogous to the category of sets and functions, but where the arrows can be interpreted as being stochastic.

References