Leonid Perlovsky

Last updated
LeonidPerlovsky 2003 Picture.JPG

Leonid Perlovsky is an Affiliated Research Professor at Northeastern University. [1] His research involves cognitive algorithms and modeling of evolution of languages and cultures.

He served as professor at Novosibirsk State University and New York University, and participated as a principal in commercial startups developing tools for text understanding, biotechnology, and financial predictions. He has published more than 320 papers and 10 book chapters and authored three books, including Neural Networks and Intellect, Oxford University Press, 2000 (currently[ when? ] in the 3rd printing) [2] and two books with Springer in 2007. [3] [4] He serves as Associate Editor for IEEE Transactions on Neural Networks, [5] Editor-at-Large for New Mathematics and Natural Computation [6] and Editor-in-Chief for Physics of Life Reviews . [7] He has received national and international awards including the IEEE Distinguished Member of Boston Section Award 2005; the US AFRL Charles Ryan Memorial Award for Basic Research, 2007; the 2007 Gabor Award, the top engineering award from the International Neural Network Society; [8] and the 2007 John McLucas Award, the highest US Air Force award for science[ citation needed ].

His current research interests include modeling mechanisms of the mind: neural modeling fields, knowledge instinct, aesthetic emotions, cognitive dissonance, emotions of beautiful and sublime, language, language evolution, emotionality of languages, language and cognition, evolution of languages and cultures, symbols as psychological processes, evolution of consciousness, languages, and cultures, mathematical intelligence and art, role of music in evolution of consciousness and cultures, science and religion, including scientific explanations for the role of sacred values in the workings of the mind, and why religious teleology is equivalent to scientific causality.

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

<span class="mw-page-title-main">Cognitive neuroscience</span> Scientific field

Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition, with a specific focus on the neural connections in the brain which are involved in mental processes. It addresses the questions of how cognitive activities are affected or controlled by neural circuits in the brain. Cognitive neuroscience is a branch of both neuroscience and psychology, overlapping with disciplines such as behavioral neuroscience, cognitive psychology, physiological psychology and affective neuroscience. Cognitive neuroscience relies upon theories in cognitive science coupled with evidence from neurobiology, and computational modeling.

Artificial consciousness (AC), also known as machine consciousness (MC), synthetic consciousness or digital consciousness, is the consciousness hypothesized to be possible in artificial intelligence. It is also the corresponding field of study, which draws insights from philosophy of mind, philosophy of artificial intelligence, cognitive science and neuroscience. The same terminology can be used with the term "sentience" instead of "consciousness" when specifically designating phenomenal consciousness.

<span class="mw-page-title-main">Connectionism</span> Cognitive science approach

Connectionism is the name of an approach to the study of human mental processes and cognition that utilizes mathematical models known as connectionist networks or artificial neural networks. Connectionism has had many 'waves' since its beginnings.

A cognitive architecture refers to both a theory about the structure of the human mind and to a computational instantiation of such a theory used in the fields of artificial intelligence (AI) and computational cognitive science. The formalized models can be used to further refine a comprehensive theory of cognition and as a useful artificial intelligence program. Successful cognitive architectures include ACT-R and SOAR. The research on cognitive architectures as software instantiation of cognitive theories was initiated by Allen Newell in 1990.

Computational cognition is the study of the computational basis of learning and inference by mathematical modeling, computer simulation, and behavioral experiments. In psychology, it is an approach which develops computational models based on experimental results. It seeks to understand the basis behind the human method of processing of information. Early on computational cognitive scientists sought to bring back and create a scientific form of Brentano's psychology.

<span class="mw-page-title-main">Stephen Grossberg</span> American scientist (born 1939)

Stephen Grossberg is a cognitive scientist, theoretical and computational psychologist, neuroscientist, mathematician, biomedical engineer, and neuromorphic technologist. He is the Wang Professor of Cognitive and Neural Systems and a Professor Emeritus of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering at Boston University.

Neuroinformatics is the emergent field that combines informatics and neuroscience. Neuroinformatics is related with neuroscience data and information processing by artificial neural networks. There are three main directions where neuroinformatics has to be applied:

In philosophy of mind, the computational theory of mind (CTM), also known as computationalism, is a family of views that hold that the human mind is an information processing system and that cognition and consciousness together are a form of computation. Warren McCulloch and Walter Pitts (1943) were the first to suggest that neural activity is computational. They argued that neural computations explain cognition. The theory was proposed in its modern form by Hilary Putnam in 1967, and developed by his PhD student, philosopher, and cognitive scientist Jerry Fodor in the 1960s, 1970s, and 1980s. It was vigorously disputed in analytic philosophy in the 1990s due to work by Putnam himself, John Searle, and others.

Simon M. Kirby is a British cognitive scientist, currently holding the Chair of Language Evolution at the University of Edinburgh, where he is Director of the Graduate School, and Programme Director for the MSc in the Evolution of Language and Cognition. He specializes in evolutionary computational models of human language and its development.

Ron Sun is a cognitive scientist who made significant contributions to computational psychology and other areas of cognitive science and artificial intelligence. He is currently professor of cognitive sciences at Rensselaer Polytechnic Institute, and formerly the James C. Dowell Professor of Engineering and Professor of Computer Science at University of Missouri. He received his Ph.D. in 1992 from Brandeis University.

Neural modeling field (NMF) is a mathematical framework for machine learning which combines ideas from neural networks, fuzzy logic, and model based recognition. It has also been referred to as modeling fields, modeling fields theory (MFT), Maximum likelihood artificial neural networks (MLANS). This framework has been developed by Leonid Perlovsky at the AFRL. NMF is interpreted as a mathematical description of the mind's mechanisms, including concepts, emotions, instincts, imagination, thinking, and understanding. NMF is a multi-level, hetero-hierarchical system. At each level in NMF there are concept-models encapsulating the knowledge; they generate so-called top-down signals, interacting with input, bottom-up signals. These interactions are governed by dynamic equations, which drive concept-model learning, adaptation, and formation of new concept-models for better correspondence to the input, bottom-up signals.

Pierre Baldi is a distinguished professor of computer science at University of California Irvine and the director of its Institute for Genomics and Bioinformatics.

Robert Kozma is First Tennessee University Professor of Mathematics at the University of Memphis.

<span class="mw-page-title-main">Gualtiero Piccinini</span> Italian–American philosopher (born 1970)

Gualtiero Piccinini is an Italian–American philosopher known for his work on the nature of mind and computation as well as on how to integrate psychology and neuroscience. He is Curators' Distinguished Professor in the Philosophy Department and Associate Director of the Center for Neurodynamics at the University of Missouri, St. Louis.

The Troland Research Awards are an annual prize given by the United States National Academy of Sciences to two researchers in recognition of psychological research on the relationship between consciousness and the physical world. The areas where these award funds are to be spent include but are not limited to areas of experimental psychology, the topics of sensation, perception, motivation, emotion, learning, memory, cognition, language, and action. The award preference is given to experimental work with a quantitative approach or experimental research seeking physiological explanations.

<span class="mw-page-title-main">Amir Hussain (cognitive scientist)</span>

Amir Hussain is a cognitive scientist, the director of Cognitive Big Data and Cybersecurity (CogBID) Research Lab at Edinburgh Napier University He is a professor of computing science. He is founding Editor-in-Chief of Springer Nature's internationally leading Cognitive Computation journal and the new Big Data Analytics journal. He is founding Editor-in-Chief for two Springer Book Series: Socio-Affective Computing and Cognitive Computation Trends, and also serves on the Editorial Board of a number of other world-leading journals including, as Associate Editor for the IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Systems, Man, and Cybernetics (Systems) and the IEEE Computational Intelligence Magazine.

<span class="mw-page-title-main">Alan Yuille</span> English academic

Alan Yuille is a Bloomberg Distinguished Professor of Computational Cognitive Science with appointments in the departments of Cognitive Science and Computer Science at Johns Hopkins University. Yuille develops models of vision and cognition for computers, intended for creating artificial vision systems. He studied under Stephen Hawking at Cambridge University on a PhD in theoretical physics, which he completed in 1981.

<span class="mw-page-title-main">Lyle Norman Long</span> Academic and computational scientist

Lyle Norman Long is an academic, and computational scientist. He is a Professor Emeritus of Computational Science, Mathematics, and Engineering at The Pennsylvania State University, and is most known for developing algorithms and software for mathematical models, including neural networks, and robotics. His research has been focused in the fields of computational science, computational neuroscience, cognitive robotics, parallel computing, and software engineering.

References

  1. Northeastern University
  2. : Perlovsky, L.I, Neural Networks and Intellect: using model based concepts, 2001, New York: Oxford University Press.
  3. : Perlovsky, Leonid I.; Kozma, Robert (Eds.), Neurodynamics of Cognition and Consciousness, 2007, ISBN   978-3-540-73266-2
  4. : Mayorga, Rene V.; Perlovsky, Leonid (Eds.), Toward Artificial Sapience, Principles and Methods for Wise Systems, 2008, ISBN   978-1-84628-998-9
  5. : IEEE Transactions on Neural Networks, Journal home page
  6. : New Mathematics and Natural Computation, journal home page
  7. : PHYSICS OF LIFE REVIEWS home page
  8. "INNS.org - Award Recipients". Archived from the original on 2013-02-19. Retrieved 2013-02-18.: IJCNN award recipients