Lester's theorem

Last updated
The Fermat points
X
13
,
X
14
{\displaystyle X_{13},X_{14}}
, the center
X
5
{\displaystyle X_{5}}
of the nine-point circle (light blue), and the circumcenter
X
3
{\displaystyle X_{3}}
of the green triangle lie on the Lester circle (black). Lester theorem.svg
The Fermat points , the center of the nine-point circle (light blue), and the circumcenter of the green triangle lie on the Lester circle (black).

In Euclidean plane geometry, Lester's theorem states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter lie on the same circle. The result is named after June Lester, who published it in 1997, [1] and the circle through these points was called the Lester circle by Clark Kimberling. [2] Lester proved the result by using the properties of complex numbers; subsequent authors have given elementary proofs [3] [4] [5] [6] , proofs using vector arithmetic, [7] and computerized proofs. [8]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Nine-point circle</span> Circle constructed from a triangle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

<span class="mw-page-title-main">Isosceles triangle</span> Triangle with at least two sides congruent

In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Pick's theorem</span> Formula for area of a grid polygon

In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary. The result was first described by Georg Alexander Pick in 1899. It was popularized in English by Hugo Steinhaus in the 1950 edition of his book Mathematical Snapshots. It has multiple proofs, and can be generalized to formulas for certain kinds of non-simple polygons.

<span class="mw-page-title-main">Concyclic points</span> Points on a common circle

In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.

<span class="mw-page-title-main">Descartes' theorem</span> Equation for radii of tangent circles

In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.

<span class="mw-page-title-main">Feuerbach point</span> Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

Divine Proportions: Rational Trigonometry to Universal Geometry is a 2005 book by the mathematician Norman J. Wildberger on a proposed alternative approach to Euclidean geometry and trigonometry, called rational trigonometry. The book advocates replacing the usual basic quantities of trigonometry, Euclidean distance and angle measure, by squared distance and the square of the sine of the angle, respectively. This is logically equivalent to the standard development. The author claims his approach holds some advantages, such as avoiding the need for irrational numbers.

<span class="mw-page-title-main">Simson line</span> Line constructed from a triangle

In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799.

<span class="mw-page-title-main">Nine-point center</span> Triangle center associated with the nine-point circle

In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.

<span class="mw-page-title-main">Isodynamic point</span> 2 points about which a triangle can be inverted into an equilateral triangle

In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by Joseph Neuberg (1885).

<span class="mw-page-title-main">Viviani's theorem</span> On the sum of the distances from an interior point to the sides of an equilateral triangle

Viviani's theorem, named after Vincenzo Viviani, states that the sum of the distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. It is a theorem commonly employed in various math competitions, secondary school mathematics examinations, and has wide applicability to many problems in the real world.

<span class="mw-page-title-main">Steiner–Lehmus theorem</span> Every triangle with two angle bisectors of equal lengths is isosceles

The Steiner–Lehmus theorem, a theorem in elementary geometry, was formulated by C. L. Lehmus and subsequently proved by Jakob Steiner. It states:

<span class="mw-page-title-main">Generalized trigonometry</span> Study of triangles in other spaces than the Euclidean plane

Ordinary trigonometry studies triangles in the Euclidean plane . There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions, definitions via differential equations, and definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space. A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n-simplices.

<span class="mw-page-title-main">Kosnita's theorem</span> Concurrency of lines connecting to certain circles associated with an arbitrary triangle

In Euclidean geometry, Kosnita's theorem is a property of certain circles associated with an arbitrary triangle.

<span class="mw-page-title-main">Musselman's theorem</span> About a common point of certain circles defined by an arbitrary triangle

In Euclidean geometry, Musselman's theorem is a property of certain circles defined by an arbitrary triangle.

<span class="mw-page-title-main">Van Lamoen circle</span>

In Euclidean plane geometry, the van Lamoen circle is a special circle associated with any given triangle . It contains the circumcenters of the six triangles that are defined inside by its three medians.

<i>99 Points of Intersection</i>

99 Points of Intersection: Examples—Pictures—Proofs is a book on constructions in Euclidean plane geometry in which three or more lines or curves meet in a single point of intersection. This book was originally written in German by Hans Walser as 99 Schnittpunkte, translated into English by Peter Hilton and Jean Pedersen, and published by the Mathematical Association of America in 2006 in their MAA Spectrum series (ISBN 978-0-88385-553-9).

<span class="mw-page-title-main">Feuerbach hyperbola</span>

In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Shiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle.

<span class="mw-page-title-main">Modern triangle geometry</span>

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

References

  1. Lester, June A. (1997), "Triangles. III. Complex triangle functions", Aequationes Mathematicae , 53 (1–2): 4–35, doi:10.1007/BF02215963, MR   1436263, S2CID   119667124
  2. Kimberling, Clark (1996), "Lester circle", The Mathematics Teacher, 89 (1): 26, JSTOR   27969621
  3. Shail, Ron (2001), "A proof of Lester's theorem", The Mathematical Gazette, 85 (503): 226–232, doi:10.2307/3622007, JSTOR   3622007, S2CID   125392368
  4. Rigby, John (2003), "A simple proof of Lester's theorem", The Mathematical Gazette, 87 (510): 444–452, doi:10.1017/S0025557200173620, JSTOR   3621279, S2CID   125214460
  5. Scott, J. A. (2003), "Two more proofs of Lester's theorem", The Mathematical Gazette, 87 (510): 553–566, doi:10.1017/S0025557200173917, JSTOR   3621308, S2CID   125997675
  6. Duff, Michael (2005), "A short projective proof of Lester's theorem", The Mathematical Gazette, 89 (516): 505–506, doi: 10.1017/S0025557200178581 , S2CID   125894605
  7. Dolan, Stan (2007), "Man versus computer", The Mathematical Gazette, 91 (522): 469–480, doi:10.1017/S0025557200182117, JSTOR   40378420, S2CID   126161757
  8. Trott, Michael (1997), "Applying GroebnerBasis to three problems in geometry", Mathematica in Education and Research, 6 (1): 15–28