Van Lamoen circle

Last updated
The van Lamoen circle through six circumcenters
A
b
{\displaystyle A_{b}}
,
A
c
{\displaystyle A_{c}}
,
B
c
{\displaystyle B_{c}}
,
B
a
{\displaystyle B_{a}}
,
C
a
{\displaystyle C_{a}}
,
C
b
{\displaystyle C_{b}} Van Lamoen circle.svg
The van Lamoen circle through six circumcenters , , , , ,

In Euclidean plane geometry, the van Lamoen circle is a special circle associated with any given triangle . It contains the circumcenters of the six triangles that are defined inside by its three medians. [1] [2]

Contents

Specifically, let , , be the vertices of , and let be its centroid (the intersection of its three medians). Let , , and be the midpoints of the sidelines , , and , respectively. It turns out that the circumcenters of the six triangles , , , , , and lie on a common circle, which is the van Lamoen circle of . [2]

History

The van Lamoen circle is named after the mathematician Floor van Lamoen  [ nl ] who posed it as a problem in 2000. [3] [4] A proof was provided by Kin Y. Li in 2001, [4] and the editors of the Amer. Math. Monthly in 2002. [1] [5]

Properties

The center of the van Lamoen circle is point in Clark Kimberling's comprehensive list of triangle centers. [1]

In 2003, Alexey Myakishev and Peter Y. Woo proved that the converse of the theorem is nearly true, in the following sense: let be any point in the triangle's interior, and , , and be its cevians, that is, the line segments that connect each vertex to and are extended until each meets the opposite side. Then the circumcenters of the six triangles , , , , , and lie on the same circle if and only if is the centroid of or its orthocenter (the intersection of its three altitudes). [6] A simpler proof of this result was given by Nguyen Minh Ha in 2005. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Centroid</span> Mean ("average") position of all the points in a shape

In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in -dimensional Euclidean space.

<span class="mw-page-title-main">Euler line</span> Line constructed from a triangle

In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Feuerbach point</span> Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

<span class="mw-page-title-main">Cubic plane curve</span> Type of a mathematical curve

In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Medial triangle</span> Triangle defined from the midpoints of the sides of another triangle

In Euclidean geometry, the medial triangle or midpoint triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of ABC.

<span class="mw-page-title-main">Nine-point center</span> Triangle center associated with the nine-point circle

In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.

<span class="mw-page-title-main">Steiner inellipse</span> Unique ellipse tangent to all 3 midpoints of a given triangles sides

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span>

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

<span class="mw-page-title-main">Kosnita's theorem</span> Concurrency of lines connecting to certain circles associated with an arbitrary triangle

In Euclidean geometry, Kosnita's theorem is a property of certain circles associated with an arbitrary triangle.

<span class="mw-page-title-main">Musselman's theorem</span> About a common point of certain circles defined by an arbitrary triangle

In Euclidean geometry, Musselman's theorem is a property of certain circles defined by an arbitrary triangle.

<span class="mw-page-title-main">Orthocentroidal circle</span> Circle constructed from a triangle

In geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and centroid at opposite ends of its diameter. This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle.

<span class="mw-page-title-main">Modern triangle geometry</span>

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

References

  1. 1 2 3 Kimberling, Clark, Encyclopedia of Triangle Centers , retrieved 2014-10-10. See X(1153) = Center of the van Lemoen circle.
  2. 1 2 Weisstein, Eric W., "van Lamoen circle", MathWorld , retrieved 2014-10-10
  3. van Lamoen, Floor (2000), Problem 10830, vol. 107, American Mathematical Monthly, p. 893
  4. 1 2 Li, Kin Y. (2001), "Concyclic problems" (PDF), Mathematical Excalibur, 6 (1): 1–2
  5. (2002), Solution to Problem 10830. American Mathematical Monthly, volume 109, pages 396-397.
  6. Myakishev, Alexey; Woo, Peter Y. (2003), "On the Circumcenters of Cevasix Configuration" (PDF), Forum Geometricorum, 3: 57–63
  7. Ha, N. M. (2005), "Another Proof of van Lamoen's Theorem and Its Converse" (PDF), Forum Geometricorum, 5: 127–132